
1

 2004 Deitel & Associates, Inc.  All rights reserved.

Chapter 13 – File and Database Systems

Outline
13.1 Introduction
13.2 Data Hierarchy
13.3 Files
13.4 File Systems
13.4.1 Directories
13.4. Metadata
13.4. Mounting
13.5 File Organization
13.6 File Allocation
13.6.1 Contiguous File Allocation
13.6.2 Linked-List Noncontiguous File Allocation
13.6.3 Tabular Noncontiguous File Allocation
13.6.4 Indexed Noncontiguous File Allocation
13.7 Free Space Management
13.8 File Access Control
13.8.1 Access Control Matrix
13.8.2 Access Control by User Classes
13.9 Data Access Techniques

 2004 Deitel & Associates, Inc.  All rights reserved.

Chapter 13 – File and Database Systems

Outline (continued)
13.10 Data Integrity Protection
13.10.1 Backup and Recovery
13.10.2 Data Integrity and Log-Structured File Systems
13.11 File Servers and Distributed Systems
13.12 Database Systems
13.12.1 Advantages of Database Systems
13.12.2 Data Access
13.12.3 Relational Database Model
13.12.4 Operating Systems and Database Systems



2

 2004 Deitel & Associates, Inc.  All rights reserved.

Objectives

• After reading this chapter, you should understand:
– the need for file systems.
– files, directories and the operations that can be performed on 

them.
– organizing and managing a storage device’s data and free space.
– controlling access to data in a file system.
– backup, recovery and file system integrity mechanisms.
– database systems and models.

 2004 Deitel & Associates, Inc.  All rights reserved.

13.1 Introduction

• Files
– Named collection of data that is manipulated as a unit
– Reside on secondary storage devices

• Operating systems can create an interface that 
facilitates navigation of a user’s files
– File systems can protect such data from corruption or total loss

from disasters
– Systems that manage large amounts of shared data can benefit 

from databases as an alternative to files



3

 2004 Deitel & Associates, Inc.  All rights reserved.

13.2 Data Hierarchy

• Information is stored in computers according to a data 
hierarchy.

• Lowest level of data hierarchy is composed of bits
– Bit patterns represent all data items of interest in computer systems

 2004 Deitel & Associates, Inc.  All rights reserved.

13.2 Data Hierarchy

• Next level in the data hierarchy is fixed-length patterns of bits 
such as bytes, characters and words
– Byte: typically 8 bits
– Word: the number of bits a processor can operate on at once
– Characters map bytes (or groups of bytes) to symbols such as letters, 

numbers, punctuation and new lines
• Three most popular character sets in use today: ASCII, EBCDIC and 

Unicode 
– Field: a group of characters
– Record: a group of fields
– File: a group of related records



4

 2004 Deitel & Associates, Inc.  All rights reserved.

13.2 Data Hierarchy

• Highest level of the data hierarchy is a file system or 
database

• A volume is a unit of data storage that may hold 
multiple files

 2004 Deitel & Associates, Inc.  All rights reserved.

13.3 Files

• File: a named collection of data that may be 
manipulated as a unit by operations such as:
– Open
– Close
– Create
– Destroy
– Copy
– Rename
– List



5

 2004 Deitel & Associates, Inc.  All rights reserved.

13.3 Files

• Individual data items within a file may be manipulated by 
operations like:
– Read
– Write
– Update
– Insert
– Delete

• File characteristics include:
– Location
– Accessibility
– Type
– Volatility
– Activity

• Files can consist of one or more records

 2004 Deitel & Associates, Inc.  All rights reserved.

13.4 File Systems

• File systems 
– Organize files and manages access to data
– Responsible for file management, auxiliary storage management, 

file integrity mechanisms and access methods
– Primarily are concerned with managing secondary storage space, 

particularly disk storage



6

 2004 Deitel & Associates, Inc.  All rights reserved.

13.4 File Systems

• File system characteristics
– Should exhibit device independence:

• Users should be able to refer to their files by symbolic names 
rather than having to use physical device names

– Should also provide backup and recovery capabilities to prevent 
either accidental loss or malicious destruction of information

– May also provide encryption and decryption capabilities to make 
information useful only to its intended audience

 2004 Deitel & Associates, Inc.  All rights reserved.

13.4.1 Directories

• Directories: 
– Files containing the names and locations of other files in the file 

system, to organize and quickly locate files

• Directory entry stores information such as:
– File name
– Location
– Size
– Type
– Accessed
– Modified and creation times



7

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 13.1 Directory file contents example.

13.4.1 Directories

 2004 Deitel & Associates, Inc.  All rights reserved.

13.4.1 Directories

• Single-level (or flat) file system:
– Simplest file system organization
– Stores all of its files using one directory
– No two files can have the same name 
– File system must perform a linear search of the directory 

contents to locate each file, which can lead to poor performance



8

 2004 Deitel & Associates, Inc.  All rights reserved.

13.4.1 Directories

• Hierarchical file system:
– A root indicates where on the storage device the root directory 

begins
– The root directory points to the various directories, each of 

which contains an entry for each of its files
– File names need be unique only within a given user directory
– The name of a file is usually formed as the pathname from the 

root directory to the file

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 13.2 Two-level hierarchical file system.

13.4.1 Directories



9

 2004 Deitel & Associates, Inc.  All rights reserved.

13.4.1 Directories

• Working directory 
– Simplifies navigation using pathnames
– Enables users to specify a pathname that does not begin at the 

root directory (i.e., a relative path)
– Absolute path (i.e., the path beginning at the root) = working 

directory + relative path

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 13.3 Example hierarchical file system contents.

13.4.1 Directories



10

 2004 Deitel & Associates, Inc.  All rights reserved.

13.4.1 Directories

• Link: a directory entry that references a data file or directory
located in a different directory
– Facilitates data sharing and can make it easier for users to access files 

located throughout a file system’s directory structure
– Soft link: directory entry containing the pathname for another file
– Hard link: directory entry that specifies the location of the file 

(typically a block number) on the storage device

 2004 Deitel & Associates, Inc.  All rights reserved.

13.4.1 Directories

• Links (Cont.)
– Because a hard link specifies a physical location of a file, it references 

invalid data when the physical location of its corresponding file 
changes

– Because soft links store the logical location of the file in the file 
system, they do not require updating when file data is moved

– However, if a user moves a file to different directory or renames the 
file, any soft links to that file are no longer valid



11

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 13.4 Links in a file system.

13.4.1 Directories

 2004 Deitel & Associates, Inc.  All rights reserved.

13.4.2 Metadata

• Metadata
– Information that protects the integrity of the file system
– Cannot be modified directly by users

• Many file systems create a superblock to store critical 
information that protects the integrity of the file 
system
– A superblock might contain:

• The file system identifier 
• The location of the storage device’s free blocks

– To reduce the risk of data loss, most file systems distribute 
redundant copies of the superblock throughout the storage device



12

 2004 Deitel & Associates, Inc.  All rights reserved.

13.4.2 Metadata

• File open operation returns a file descriptor
– A non-negative integer index into the open-file table 

• From this point on, access to the file is directed 
through the file descriptor

• To enable fast access to file-specific information such 
as permissions, the open-file table often contains file 
control blocks, also called file attributes:
– Highly system-dependent structures that might include the file’s 

symbolic name, location in secondary storage, access control 
data and so on

 2004 Deitel & Associates, Inc.  All rights reserved.

13.4.3 Mounting

• Mount operation 
– Combines multiple file systems into one namespace so that they 

can be referenced from a single root directory
– Assigns a directory, called the mount point, in the native file system to 

the root of the mounted file system
• File systems manage mounted directories with mount tables:

– Contain information about the location of mount points and the devices 
to which they point

• When the native file system encounters a mount point, it uses 
the mount table to determine the device and type of the 
mounted file system

• Users can create soft links to files in mounted file systems but
cannot create hard links between file systems



13

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 13.5 Mounting a file system.

13.4.3 Mounting

 2004 Deitel & Associates, Inc.  All rights reserved.

13.5 File Organization

• File organization: the manner in which the records of 
a file are arranged on secondary storage

• File organization schemes include:
– Sequential
– Direct
– Indexed nonsequential
– Partitioned 



14

 2004 Deitel & Associates, Inc.  All rights reserved.

13.6 File Allocation

• File allocation
– Problem of allocating and freeing space on secondary storage is 

somewhat like that experienced in primary storage allocation 
under variable-partition multiprogramming

– Contiguous allocation systems have generally been replaced by 
more dynamic noncontiguous allocation systems 

• Files tend to grow or shrink over time
• Users rarely know in advance how large their files will be

 2004 Deitel & Associates, Inc.  All rights reserved.

13.6.1 Contiguous File Allocation

• Contiguous allocation 
– Place file data at contiguous addresses on the storage device
– Advantages

• Successive logical records typically are physically adjacent to one another
– Disadvantages

• External fragmentation
• Poor performance can result if files grow and shrink over time
• If a file grows beyond the size originally specified and no contiguous free 

blocks are available, it must be transferred to a new area of adequate size, 
leading to additional I/O operations.



15

 2004 Deitel & Associates, Inc.  All rights reserved.

13.6.2 Linked-List Noncontiguous File Allocation

• Sector-based linked-list noncontiguous file allocation 
scheme:
– A directory entry points to the first sector of a file 

• The data portion of a sector stores the contents of the file
• The pointer portion points to the file’s next sector 

– Sectors belonging to a common file form a linked list

 2004 Deitel & Associates, Inc.  All rights reserved.

13.6.2 Linked-List Noncontiguous File Allocation

• When performing block allocation, the system 
allocates blocks of contiguous sectors (sometimes 
called extents)

• Block chaining
– Entries in the user directory point to the first block of each file
– File blocks contain: 

• A data block 
• A pointer to the next block



16

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 13.6 Noncontiguous file allocation using a linked list.

13.6.2 Linked-List Noncontiguous File Allocation

 2004 Deitel & Associates, Inc.  All rights reserved.

13.6.2 Linked-List Noncontiguous File Allocation

• When locating a record 
– The chain must be searched from the beginning
– If the blocks are dispersed throughout the storage device (which

is normal), the search process can be slow as block-to-block 
seeks occur

• Insertion and deletion are done by modifying the 
pointer in the previous block



17

 2004 Deitel & Associates, Inc.  All rights reserved.

13.6.2 Linked-List Noncontiguous File Allocation

• Large block sizes
– Can result in significant internal fragmentation

• Small block sizes 
– May cause file data to be spread across multiple blocks 

dispersed throughout the storage device
– Poor performance as the storage device performs many 

seeks to access all the records of a file

 2004 Deitel & Associates, Inc.  All rights reserved.

13.6.3 Tabular Noncontiguous File Allocation

• Tabular noncontiguous file allocation
– Uses tables storing pointers to file blocks

• Reduces the number of lengthy seeks required to access a particular 
record

– Directory entries indicate the first block of a file 
– Current block number is used as an index into the block 

allocation table to determine the location of the next block. 
• If the current block is the file’s last block, then its block allocation 

table entry is null



18

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 13.7 Tabular noncontiguous file allocation.

13.6.3 Tabular Noncontiguous File Allocation

 2004 Deitel & Associates, Inc.  All rights reserved.

13.6.3 Tabular Noncontiguous File Allocation

• Pointers that locate file data are stored in a central 
location
– The table can be cached so that the chain of blocks that compose

a file can be traversed quickly
– Improves access times

• To locate the last record of a file, however:
– The file system might need to follow many pointers in the block 

allocation table
– Could take significant time



19

 2004 Deitel & Associates, Inc.  All rights reserved.

13.6.3 Tabular Noncontiguous File Allocation

• When a storage device contains many blocks:
– The block allocation table can become large and fragmented
– Reduces file system performance

• A popular implementation of tabular noncontiguous 
file allocation is Microsoft’s FAT file system

 2004 Deitel & Associates, Inc.  All rights reserved.

13.6.4 Indexed Noncontiguous File Allocation

• Indexed noncontiguous file allocation:
– Each file has an index block or several index blocks
– Index blocks contain a list of pointers that point to file data 

blocks
– A file’s directory entry points to its index block, which may 

reserve the last few entries to store pointers to more index 
blocks, a technique called chaining



20

 2004 Deitel & Associates, Inc.  All rights reserved.

13.6.4 Indexed Noncontiguous File Allocation

• Primary advantage of index block chaining over 
simple linked-list implementations:
– Searching may take place in the index blocks themselves. 
– File systems typically place index blocks near the data blocks 

they reference, so the data blocks can be accessed quickly after
their index block is loaded

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 13.8 Index block chaining.

13.6.4 Indexed Noncontiguous File Allocation



21

 2004 Deitel & Associates, Inc.  All rights reserved.

13.6.4 Indexed Noncontiguous File Allocation

• Index blocks are called inodes (i.e., index nodes) in 
UNIX-based operating systems

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 13.9 Inode structure.

13.6.4 Indexed Noncontiguous File Allocation



22

 2004 Deitel & Associates, Inc.  All rights reserved.

13.7 Free Space Management

• Some systems use a free list to manage the storage 
device’s free space
– Free list: Linked list of blocks containing the locations of free 

blocks
– Blocks are allocated from the beginning of the free list 
– Newly freed blocks are appended to the end of the list 

• Low overhead to perform free list maintenance 
operations

• Files are likely to be allocated in noncontiguous 
blocks
– Increases file access time

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 13.10 Free space management using a free list.

13.7 Free Space Management



23

 2004 Deitel & Associates, Inc.  All rights reserved.

13.7 Free Space Management

• A bitmap contains one bit for each block in memory
– ith bit corresponds to the ith block on the storage device

• Advantage of bitmaps over free lists:
– The file system can quickly determine if contiguous blocks are 

available at certain locations on secondary storage

• Disadvantage of bitmaps:
– The file system may need to search the entire bitmap to find a 

free block, resulting in substantial execution overhead

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 13.11 Free space management using a bitmap.

13.7 Free Space Management



24

 2004 Deitel & Associates, Inc.  All rights reserved.

13.8 File Access Control

• Files are often used to store sensitive data such as: 
– Credit card numbers
– Passwords
– Social security numbers

• Therefore, they should include mechanisms to control 
user access to data.
– Access control matrix
– Access control by user classes

 2004 Deitel & Associates, Inc.  All rights reserved.

13.8.1 Access Control Matrix

• Two-dimensional access control matrix:
– Entry aij is 1 if user i is allowed access to file j
– Otherwise aij = 0

• In an installation with a large number of users and a 
large number of files, this matrix generally would be 
large and sparse

• Inappropriate for most systems



25

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 13.12 Access control matrix.

13.8.1 Access Control Matrix

 2004 Deitel & Associates, Inc.  All rights reserved.

13.8.2 Access Control by User Classes

• A technique that requires considerably less space is to 
control access to various user classes

• User classes can include:
– The file owner
– A specified user
– Group
– Project
– Public

• Access control data
– Can be stored as part of the file control block
– Often consumes an insignificant amount of space



26

 2004 Deitel & Associates, Inc.  All rights reserved.

13.9 Data Access Techniques

• Today’s operating systems generally provide many 
access methods

• Queued access methods
– Used when the sequence in which records are to be processed 

can be anticipated, such as in sequential and indexed sequential
accessing

– Perform anticipatory buffering and scheduling of I/O operations

• Basic access methods
– Normally used when the sequence in which records are to be 

accessed cannot be anticipated, particularly with direct accessing

 2004 Deitel & Associates, Inc.  All rights reserved.

13.9 Data Access Techniques

• Memory-mapped files 
– Map file data to a process’s virtual address space instead of 

using a file system cache
– Because references to memory-mapped files occur in a process’s 

virtual address space, the virtual memory manager can make 
page-replacement decisions based on each process’s reference 
pattern



27

 2004 Deitel & Associates, Inc.  All rights reserved.

13.10 Data Integrity Protection

• Computer systems often store critical information, 
such as:
– Inventories
– Financial records
– Personal information

• System crashes, natural disasters and malicious 
programs can destroy this information

• The results of such events can be catastrophic
• Operating systems and data storage systems should be 

fault tolerant:
– Account for the possibility of disasters and provide techniques to 

recover from them

 2004 Deitel & Associates, Inc.  All rights reserved.

13.10.1 Backup and Recovery

• Backup techniques 
– Store redundant copies of information

• Recovery techniques
– Enable the system to restore data after a system failure

• Physical safeguards such as locks and fire alarms are 
the lowest level of data protection

• Performing periodic backups is the most common 
technique used to ensure the continued availability of 
data



28

 2004 Deitel & Associates, Inc.  All rights reserved.

13.10.1 Backup and Recovery

• Physical backups 
– Duplicate a storage device’s data at the bit level

• Logical backups
– Store file system data and its logical structure 
– Inspect the directory structure to determine which files need to

be backed up, then write these files to a backup device in a 
common, often compressed, archival format

• Incremental backups are logical backups that store 
only file system data that has changed since the 
previous backup

 2004 Deitel & Associates, Inc.  All rights reserved.

13.10.2 Data Integrity and Log-Structured File Systems

• In systems that cannot tolerate loss of data or 
downtime, RAID and transaction logging are 
appropriate

• If a system failure occurs during a write operation, 
file data may be left in an inconsistent state

• Transaction-based file systems
– Reduce data loss using atomic transactions:

• Perform a group of operations in their entirety or not at all
– If an error occurs that prevents a transaction from completing, it 

is rolled back by returning the system to the state before the 
transaction began



29

 2004 Deitel & Associates, Inc.  All rights reserved.

13.10.2 Data Integrity and Log-Structured File Systems

• Transaction-based file systems
– Reduce data loss using atomic transactions:

• Perform a group of operations in their entirety or not at all
– If an error occurs that prevents a transaction from completing, it 

is rolled back by returning the system to the state before the 
transaction began

 2004 Deitel & Associates, Inc.  All rights reserved.

13.10.2 Data Integrity and Log-Structured File Systems

• Atomic transactions
– Can be implemented by recording the result of each operation in a log 

file instead of modifying existing data
– Once the transaction has completed, it is committed by recording a 

sentinel value in the log

• Checkpoints
– To reduce the time spent reprocessing transactions in the log, most 

transaction-based systems maintain checkpoints that point to the last 
transaction that has been transferred to permanent storage

– If the system crashes, it need only examine transactions after the 
checkpoint

• Shadow paging implements atomic transactions by writing 
modified data to a free block instead of the original block



30

 2004 Deitel & Associates, Inc.  All rights reserved.

13.10.2 Data Integrity and Log-Structured File Systems

• Log-structured file systems (LFS)
– Also called journaling file systems
– Perform all file system operations as logged transactions to 

ensure that they do not leave the system in an inconsistent 
state

– The entire disk serves as a log file
– New data is written sequentially in the log file’s free space 

 2004 Deitel & Associates, Inc.  All rights reserved.

13.10.2 Data Integrity and Log-Structured File Systems

• Because modified directories and metadata are 
always written to the end of the log, an LFS might 
need to read the entire log to locate a particular file, 
leading to poor read performance

• To reduce this problem, an LFS 
– Caches locations of file system metadata 
– Occasionally writes inode maps or superblocks to the log to 

indicate the location of other metadata
– Enables the operating system to locate and cache file metadata 

quickly when the system boots



31

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 13.13 Log-structured file system.

13.10.2 Data Integrity and Log-Structured File Systems

 2004 Deitel & Associates, Inc.  All rights reserved.

13.10.2 Data Integrity and Log-Structured File Systems

• Some file systems attempt to reduce the cost of log-
structured file systems by using a log only to store 
metadata
– Ensures file system integrity with relatively low overhead 
– Does not ensure file integrity in the event of a system failure 



32

 2004 Deitel & Associates, Inc.  All rights reserved.

13.10.2 Data Integrity and Log-Structured File Systems

• Data is written to the log sequentially
– Each LFS write requires only a single seek while there is still 

space on disk

• When the log fills, the file system’s free space is 
likely to be fragmented 

• This can lead to poor read and write performance
• To address this issue, an LFS can create contiguous 

free space in the log by copying valid data to a 
contiguous region at the end of the log

 2004 Deitel & Associates, Inc.  All rights reserved.

13.11 File Servers and Distributed Systems

• One approach to handling nonlocal file references in 
a computer network is to route all such requests to a 
file server
– A computer system dedicated to resolving intercomputer file 

references
– Centralizes control of these references
– File server could easily become a bottleneck, because all client

computers send all requests to the server

• A better approach is to let the separate computers 
communicate directly with one another



33

 2004 Deitel & Associates, Inc.  All rights reserved.

13.12 Database Systems

• Database 
– Centrally controlled collection of data stored in a standardized

format

• A database system involves:
– Data
– Hardware on which the data resides 
– Software that controls access to data (called a database 

management system or DBMS)

 2004 Deitel & Associates, Inc.  All rights reserved.

13.12.1 Advantages of Database Systems

• Databases reduce data redundancy and prevent data 
from being in an inconsistent state
– Redundancy is reduced by combining identical data from 

separate files

• Databases also facilitate data sharing



34

 2004 Deitel & Associates, Inc.  All rights reserved.

13.12.2 Data Access

• Data independence
– Applications need not be concerned with how data is physically 

stored or accessed
– Makes it possible for the storage structure and accessing strategy 

to be modified in response to the installation’s changing 
requirements, but without the need to modify functioning 
applications

 2004 Deitel & Associates, Inc.  All rights reserved.

13.12.2 Data Access

• Database languages
– Allow database independence by providing a standard way to 

access information
– A database language consists of:

• Data definition language (DDL)
• Data manipulation language (DML)
• Query language



35

 2004 Deitel & Associates, Inc.  All rights reserved.

13.12.2 Data Access

• Database languages (cont.)
– A DDL specifies how data are organized and related and the 

DML enables data to be modified
– A query language is a part of the DML that allows users to create 

queries that search the database for data that meets certain 
criteria

• The Structured Query Language (SQL) is currently one of the most
popular database languages

 2004 Deitel & Associates, Inc.  All rights reserved.

13.12.2 Data Access

• Distributed database
– Database that is spread throughout the computer systems of a 

network
– Facilitates efficient data access across many sets of data that 

reside on different computers



36

 2004 Deitel & Associates, Inc.  All rights reserved.

13.12.3 Relational Database Model

• Databases are based on models that describe how data 
and their relationships are viewed

• Relational model is a logical structure rather than a 
physical one

• The principles of relational database management are 
independent of the physical implementation of data 
structures

 2004 Deitel & Associates, Inc.  All rights reserved.

13.12.3 Relational Database Model

• Relations
– Indicate the various attributes of an entity
– Any particular element of a relation is called a tuple (row). 
– Each attribute (column) of the relation belongs to a single 

domain
– The number of attributes in a relation is the degree of the relation
– A projection operation forms a subset of the attributes
– A join operation combines relations to produce more complex 

relations

• The relational database model is relatively easy to 
implement



37

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 13.14 Relation in a relational database.

13.12.3 Relational Database Model

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 13.15 Relation formed by projection.

13.12.3 Relational Database Model



38

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 13.16 SQL query.

13.12.3 Relational Database Model

 2004 Deitel & Associates, Inc.  All rights reserved.

13.12.4 Operating Systems and Database Systems

• Various operating system services support database 
management systems, namely:
– Buffer pool management
– File system
– Scheduling
– Process management
– Interprocess communication
– Consistency control
– Paged virtual memory

• Most of these features are not specifically optimized to DBMS 
environments, so DBMS designers have tended to bypass 
operating system services in favor of supplying their own


