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Objectives

• After reading this chapter, you should understand:
– the need for file systems.
– files, directories and the operations that can be performed on 

them.
– organizing and managing a storage device’s data and free space.
– controlling access to data in a file system.
– backup, recovery and file system integrity mechanisms.
– database systems and models.
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13.1 Introduction

• Files
– Named collection of data that is manipulated as a unit
– Reside on secondary storage devices

• Operating systems can create an interface that 
facilitates navigation of a user’s files
– File systems can protect such data from corruption or total loss

from disasters
– Systems that manage large amounts of shared data can benefit 

from databases as an alternative to files
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13.2 Data Hierarchy

• Information is stored in computers according to a data 
hierarchy.

• Lowest level of data hierarchy is composed of bits
– Bit patterns represent all data items of interest in computer systems
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13.2 Data Hierarchy

• Next level in the data hierarchy is fixed-length patterns of bits 
such as bytes, characters and words
– Byte: typically 8 bits
– Word: the number of bits a processor can operate on at once
– Characters map bytes (or groups of bytes) to symbols such as letters, 

numbers, punctuation and new lines
• Three most popular character sets in use today: ASCII, EBCDIC and 

Unicode 
– Field: a group of characters
– Record: a group of fields
– File: a group of related records
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13.2 Data Hierarchy

• Highest level of the data hierarchy is a file system or 
database

• A volume is a unit of data storage that may hold 
multiple files
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13.3 Files

• File: a named collection of data that may be 
manipulated as a unit by operations such as:
– Open
– Close
– Create
– Destroy
– Copy
– Rename
– List
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13.3 Files

• Individual data items within a file may be manipulated by 
operations like:
– Read
– Write
– Update
– Insert
– Delete

• File characteristics include:
– Location
– Accessibility
– Type
– Volatility
– Activity

• Files can consist of one or more records
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13.4 File Systems

• File systems 
– Organize files and manages access to data
– Responsible for file management, auxiliary storage management, 

file integrity mechanisms and access methods
– Primarily are concerned with managing secondary storage space, 

particularly disk storage
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13.4 File Systems

• File system characteristics
– Should exhibit device independence:

• Users should be able to refer to their files by symbolic names 
rather than having to use physical device names

– Should also provide backup and recovery capabilities to prevent 
either accidental loss or malicious destruction of information

– May also provide encryption and decryption capabilities to make 
information useful only to its intended audience
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13.4.1 Directories

• Directories: 
– Files containing the names and locations of other files in the file 

system, to organize and quickly locate files

• Directory entry stores information such as:
– File name
– Location
– Size
– Type
– Accessed
– Modified and creation times
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Figure 13.1 Directory file contents example.

13.4.1 Directories
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13.4.1 Directories

• Single-level (or flat) file system:
– Simplest file system organization
– Stores all of its files using one directory
– No two files can have the same name 
– File system must perform a linear search of the directory 

contents to locate each file, which can lead to poor performance
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13.4.1 Directories

• Hierarchical file system:
– A root indicates where on the storage device the root directory 

begins
– The root directory points to the various directories, each of 

which contains an entry for each of its files
– File names need be unique only within a given user directory
– The name of a file is usually formed as the pathname from the 

root directory to the file
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Figure 13.2 Two-level hierarchical file system.

13.4.1 Directories
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13.4.1 Directories

• Working directory 
– Simplifies navigation using pathnames
– Enables users to specify a pathname that does not begin at the 

root directory (i.e., a relative path)
– Absolute path (i.e., the path beginning at the root) = working 

directory + relative path
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Figure 13.3 Example hierarchical file system contents.

13.4.1 Directories
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13.4.1 Directories

• Link: a directory entry that references a data file or directory
located in a different directory
– Facilitates data sharing and can make it easier for users to access files 

located throughout a file system’s directory structure
– Soft link: directory entry containing the pathname for another file
– Hard link: directory entry that specifies the location of the file 

(typically a block number) on the storage device
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13.4.1 Directories

• Links (Cont.)
– Because a hard link specifies a physical location of a file, it references 

invalid data when the physical location of its corresponding file 
changes

– Because soft links store the logical location of the file in the file 
system, they do not require updating when file data is moved

– However, if a user moves a file to different directory or renames the 
file, any soft links to that file are no longer valid
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Figure 13.4 Links in a file system.

13.4.1 Directories
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13.4.2 Metadata

• Metadata
– Information that protects the integrity of the file system
– Cannot be modified directly by users

• Many file systems create a superblock to store critical 
information that protects the integrity of the file 
system
– A superblock might contain:

• The file system identifier 
• The location of the storage device’s free blocks

– To reduce the risk of data loss, most file systems distribute 
redundant copies of the superblock throughout the storage device
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13.4.2 Metadata

• File open operation returns a file descriptor
– A non-negative integer index into the open-file table 

• From this point on, access to the file is directed 
through the file descriptor

• To enable fast access to file-specific information such 
as permissions, the open-file table often contains file 
control blocks, also called file attributes:
– Highly system-dependent structures that might include the file’s 

symbolic name, location in secondary storage, access control 
data and so on
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13.4.3 Mounting

• Mount operation 
– Combines multiple file systems into one namespace so that they 

can be referenced from a single root directory
– Assigns a directory, called the mount point, in the native file system to 

the root of the mounted file system
• File systems manage mounted directories with mount tables:

– Contain information about the location of mount points and the devices 
to which they point

• When the native file system encounters a mount point, it uses 
the mount table to determine the device and type of the 
mounted file system

• Users can create soft links to files in mounted file systems but
cannot create hard links between file systems
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Figure 13.5 Mounting a file system.

13.4.3 Mounting
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13.5 File Organization

• File organization: the manner in which the records of 
a file are arranged on secondary storage

• File organization schemes include:
– Sequential
– Direct
– Indexed nonsequential
– Partitioned 
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13.6 File Allocation

• File allocation
– Problem of allocating and freeing space on secondary storage is 

somewhat like that experienced in primary storage allocation 
under variable-partition multiprogramming

– Contiguous allocation systems have generally been replaced by 
more dynamic noncontiguous allocation systems 

• Files tend to grow or shrink over time
• Users rarely know in advance how large their files will be
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13.6.1 Contiguous File Allocation

• Contiguous allocation 
– Place file data at contiguous addresses on the storage device
– Advantages

• Successive logical records typically are physically adjacent to one another
– Disadvantages

• External fragmentation
• Poor performance can result if files grow and shrink over time
• If a file grows beyond the size originally specified and no contiguous free 

blocks are available, it must be transferred to a new area of adequate size, 
leading to additional I/O operations.
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13.6.2 Linked-List Noncontiguous File Allocation

• Sector-based linked-list noncontiguous file allocation 
scheme:
– A directory entry points to the first sector of a file 

• The data portion of a sector stores the contents of the file
• The pointer portion points to the file’s next sector 

– Sectors belonging to a common file form a linked list
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13.6.2 Linked-List Noncontiguous File Allocation

• When performing block allocation, the system 
allocates blocks of contiguous sectors (sometimes 
called extents)

• Block chaining
– Entries in the user directory point to the first block of each file
– File blocks contain: 

• A data block 
• A pointer to the next block
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Figure 13.6 Noncontiguous file allocation using a linked list.

13.6.2 Linked-List Noncontiguous File Allocation
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13.6.2 Linked-List Noncontiguous File Allocation

• When locating a record 
– The chain must be searched from the beginning
– If the blocks are dispersed throughout the storage device (which

is normal), the search process can be slow as block-to-block 
seeks occur

• Insertion and deletion are done by modifying the 
pointer in the previous block
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13.6.2 Linked-List Noncontiguous File Allocation

• Large block sizes
– Can result in significant internal fragmentation

• Small block sizes 
– May cause file data to be spread across multiple blocks 

dispersed throughout the storage device
– Poor performance as the storage device performs many 

seeks to access all the records of a file
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13.6.3 Tabular Noncontiguous File Allocation

• Tabular noncontiguous file allocation
– Uses tables storing pointers to file blocks

• Reduces the number of lengthy seeks required to access a particular 
record

– Directory entries indicate the first block of a file 
– Current block number is used as an index into the block 

allocation table to determine the location of the next block. 
• If the current block is the file’s last block, then its block allocation 

table entry is null
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Figure 13.7 Tabular noncontiguous file allocation.

13.6.3 Tabular Noncontiguous File Allocation
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13.6.3 Tabular Noncontiguous File Allocation

• Pointers that locate file data are stored in a central 
location
– The table can be cached so that the chain of blocks that compose

a file can be traversed quickly
– Improves access times

• To locate the last record of a file, however:
– The file system might need to follow many pointers in the block 

allocation table
– Could take significant time
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13.6.3 Tabular Noncontiguous File Allocation

• When a storage device contains many blocks:
– The block allocation table can become large and fragmented
– Reduces file system performance

• A popular implementation of tabular noncontiguous 
file allocation is Microsoft’s FAT file system

 2004 Deitel & Associates, Inc.  All rights reserved.

13.6.4 Indexed Noncontiguous File Allocation

• Indexed noncontiguous file allocation:
– Each file has an index block or several index blocks
– Index blocks contain a list of pointers that point to file data 

blocks
– A file’s directory entry points to its index block, which may 

reserve the last few entries to store pointers to more index 
blocks, a technique called chaining
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13.6.4 Indexed Noncontiguous File Allocation

• Primary advantage of index block chaining over 
simple linked-list implementations:
– Searching may take place in the index blocks themselves. 
– File systems typically place index blocks near the data blocks 

they reference, so the data blocks can be accessed quickly after
their index block is loaded
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Figure 13.8 Index block chaining.

13.6.4 Indexed Noncontiguous File Allocation
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13.6.4 Indexed Noncontiguous File Allocation

• Index blocks are called inodes (i.e., index nodes) in 
UNIX-based operating systems
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Figure 13.9 Inode structure.

13.6.4 Indexed Noncontiguous File Allocation
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13.7 Free Space Management

• Some systems use a free list to manage the storage 
device’s free space
– Free list: Linked list of blocks containing the locations of free 

blocks
– Blocks are allocated from the beginning of the free list 
– Newly freed blocks are appended to the end of the list 

• Low overhead to perform free list maintenance 
operations

• Files are likely to be allocated in noncontiguous 
blocks
– Increases file access time
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Figure 13.10 Free space management using a free list.

13.7 Free Space Management
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13.7 Free Space Management

• A bitmap contains one bit for each block in memory
– ith bit corresponds to the ith block on the storage device

• Advantage of bitmaps over free lists:
– The file system can quickly determine if contiguous blocks are 

available at certain locations on secondary storage

• Disadvantage of bitmaps:
– The file system may need to search the entire bitmap to find a 

free block, resulting in substantial execution overhead

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 13.11 Free space management using a bitmap.

13.7 Free Space Management
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13.8 File Access Control

• Files are often used to store sensitive data such as: 
– Credit card numbers
– Passwords
– Social security numbers

• Therefore, they should include mechanisms to control 
user access to data.
– Access control matrix
– Access control by user classes
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13.8.1 Access Control Matrix

• Two-dimensional access control matrix:
– Entry aij is 1 if user i is allowed access to file j
– Otherwise aij = 0

• In an installation with a large number of users and a 
large number of files, this matrix generally would be 
large and sparse

• Inappropriate for most systems
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Figure 13.12 Access control matrix.

13.8.1 Access Control Matrix
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13.8.2 Access Control by User Classes

• A technique that requires considerably less space is to 
control access to various user classes

• User classes can include:
– The file owner
– A specified user
– Group
– Project
– Public

• Access control data
– Can be stored as part of the file control block
– Often consumes an insignificant amount of space
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13.9 Data Access Techniques

• Today’s operating systems generally provide many 
access methods

• Queued access methods
– Used when the sequence in which records are to be processed 

can be anticipated, such as in sequential and indexed sequential
accessing

– Perform anticipatory buffering and scheduling of I/O operations

• Basic access methods
– Normally used when the sequence in which records are to be 

accessed cannot be anticipated, particularly with direct accessing
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13.9 Data Access Techniques

• Memory-mapped files 
– Map file data to a process’s virtual address space instead of 

using a file system cache
– Because references to memory-mapped files occur in a process’s 

virtual address space, the virtual memory manager can make 
page-replacement decisions based on each process’s reference 
pattern
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13.10 Data Integrity Protection

• Computer systems often store critical information, 
such as:
– Inventories
– Financial records
– Personal information

• System crashes, natural disasters and malicious 
programs can destroy this information

• The results of such events can be catastrophic
• Operating systems and data storage systems should be 

fault tolerant:
– Account for the possibility of disasters and provide techniques to 

recover from them

 2004 Deitel & Associates, Inc.  All rights reserved.

13.10.1 Backup and Recovery

• Backup techniques 
– Store redundant copies of information

• Recovery techniques
– Enable the system to restore data after a system failure

• Physical safeguards such as locks and fire alarms are 
the lowest level of data protection

• Performing periodic backups is the most common 
technique used to ensure the continued availability of 
data
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13.10.1 Backup and Recovery

• Physical backups 
– Duplicate a storage device’s data at the bit level

• Logical backups
– Store file system data and its logical structure 
– Inspect the directory structure to determine which files need to

be backed up, then write these files to a backup device in a 
common, often compressed, archival format

• Incremental backups are logical backups that store 
only file system data that has changed since the 
previous backup
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13.10.2 Data Integrity and Log-Structured File Systems

• In systems that cannot tolerate loss of data or 
downtime, RAID and transaction logging are 
appropriate

• If a system failure occurs during a write operation, 
file data may be left in an inconsistent state

• Transaction-based file systems
– Reduce data loss using atomic transactions:

• Perform a group of operations in their entirety or not at all
– If an error occurs that prevents a transaction from completing, it 

is rolled back by returning the system to the state before the 
transaction began
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13.10.2 Data Integrity and Log-Structured File Systems

• Transaction-based file systems
– Reduce data loss using atomic transactions:

• Perform a group of operations in their entirety or not at all
– If an error occurs that prevents a transaction from completing, it 

is rolled back by returning the system to the state before the 
transaction began
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13.10.2 Data Integrity and Log-Structured File Systems

• Atomic transactions
– Can be implemented by recording the result of each operation in a log 

file instead of modifying existing data
– Once the transaction has completed, it is committed by recording a 

sentinel value in the log

• Checkpoints
– To reduce the time spent reprocessing transactions in the log, most 

transaction-based systems maintain checkpoints that point to the last 
transaction that has been transferred to permanent storage

– If the system crashes, it need only examine transactions after the 
checkpoint

• Shadow paging implements atomic transactions by writing 
modified data to a free block instead of the original block
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13.10.2 Data Integrity and Log-Structured File Systems

• Log-structured file systems (LFS)
– Also called journaling file systems
– Perform all file system operations as logged transactions to 

ensure that they do not leave the system in an inconsistent 
state

– The entire disk serves as a log file
– New data is written sequentially in the log file’s free space 
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13.10.2 Data Integrity and Log-Structured File Systems

• Because modified directories and metadata are 
always written to the end of the log, an LFS might 
need to read the entire log to locate a particular file, 
leading to poor read performance

• To reduce this problem, an LFS 
– Caches locations of file system metadata 
– Occasionally writes inode maps or superblocks to the log to 

indicate the location of other metadata
– Enables the operating system to locate and cache file metadata 

quickly when the system boots
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Figure 13.13 Log-structured file system.

13.10.2 Data Integrity and Log-Structured File Systems
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13.10.2 Data Integrity and Log-Structured File Systems

• Some file systems attempt to reduce the cost of log-
structured file systems by using a log only to store 
metadata
– Ensures file system integrity with relatively low overhead 
– Does not ensure file integrity in the event of a system failure 
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13.10.2 Data Integrity and Log-Structured File Systems

• Data is written to the log sequentially
– Each LFS write requires only a single seek while there is still 

space on disk

• When the log fills, the file system’s free space is 
likely to be fragmented 

• This can lead to poor read and write performance
• To address this issue, an LFS can create contiguous 

free space in the log by copying valid data to a 
contiguous region at the end of the log
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13.11 File Servers and Distributed Systems

• One approach to handling nonlocal file references in 
a computer network is to route all such requests to a 
file server
– A computer system dedicated to resolving intercomputer file 

references
– Centralizes control of these references
– File server could easily become a bottleneck, because all client

computers send all requests to the server

• A better approach is to let the separate computers 
communicate directly with one another
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13.12 Database Systems

• Database 
– Centrally controlled collection of data stored in a standardized

format

• A database system involves:
– Data
– Hardware on which the data resides 
– Software that controls access to data (called a database 

management system or DBMS)
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13.12.1 Advantages of Database Systems

• Databases reduce data redundancy and prevent data 
from being in an inconsistent state
– Redundancy is reduced by combining identical data from 

separate files

• Databases also facilitate data sharing
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13.12.2 Data Access

• Data independence
– Applications need not be concerned with how data is physically 

stored or accessed
– Makes it possible for the storage structure and accessing strategy 

to be modified in response to the installation’s changing 
requirements, but without the need to modify functioning 
applications
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13.12.2 Data Access

• Database languages
– Allow database independence by providing a standard way to 

access information
– A database language consists of:

• Data definition language (DDL)
• Data manipulation language (DML)
• Query language
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13.12.2 Data Access

• Database languages (cont.)
– A DDL specifies how data are organized and related and the 

DML enables data to be modified
– A query language is a part of the DML that allows users to create 

queries that search the database for data that meets certain 
criteria

• The Structured Query Language (SQL) is currently one of the most
popular database languages
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13.12.2 Data Access

• Distributed database
– Database that is spread throughout the computer systems of a 

network
– Facilitates efficient data access across many sets of data that 

reside on different computers
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13.12.3 Relational Database Model

• Databases are based on models that describe how data 
and their relationships are viewed

• Relational model is a logical structure rather than a 
physical one

• The principles of relational database management are 
independent of the physical implementation of data 
structures
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13.12.3 Relational Database Model

• Relations
– Indicate the various attributes of an entity
– Any particular element of a relation is called a tuple (row). 
– Each attribute (column) of the relation belongs to a single 

domain
– The number of attributes in a relation is the degree of the relation
– A projection operation forms a subset of the attributes
– A join operation combines relations to produce more complex 

relations

• The relational database model is relatively easy to 
implement
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Figure 13.14 Relation in a relational database.

13.12.3 Relational Database Model
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Figure 13.15 Relation formed by projection.

13.12.3 Relational Database Model
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Figure 13.16 SQL query.

13.12.3 Relational Database Model
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13.12.4 Operating Systems and Database Systems

• Various operating system services support database 
management systems, namely:
– Buffer pool management
– File system
– Scheduling
– Process management
– Interprocess communication
– Consistency control
– Paged virtual memory

• Most of these features are not specifically optimized to DBMS 
environments, so DBMS designers have tended to bypass 
operating system services in favor of supplying their own


