
1

 2004 Deitel & Associates, Inc. All rights reserved.

Chapter 11 – Virtual Memory Management

Outline
11.1 Introduction
11.2 Locality
11.3 Demand Paging
11.4 Anticipatory Paging
11.5 Page Replacement
11.6 Page Replacement Strategies
11.6.1 Random Page Replacement
11.6.2 First-In-First-Out (FIFO) Page Replacement
11.6.3 FIFO Anomaly
11.6.4 Least-Recently-Used (LRU) Page Replacement
11.6.5 Least-Frequently-Used (LFU) Page Replacement
11.6.6 Not-Used-Recently (NUR) Page Replacement
11.6.7 Modifications to FIFO: Second-Chance and Clock Page

Replacement
11.6.8 Far Page Replacement
11.7 Working Set Model
11.8 Page-Fault-Frequency (PFF) Page Replacement

 2004 Deitel & Associates, Inc. All rights reserved.

Chapter 11 – Virtual Memory Management

Outline (continued)
11.9 Page Release
11.10 Page Size
11.11 Program Behavior under Paging
11.12 Global vs. Local Page Replacement
11.13 Case Study: Linux Page Replacement

2

 2004 Deitel & Associates, Inc. All rights reserved.

Objectives

• After reading this chapter, you should understand:
– the benefits and drawbacks of demand and anticipatory paging.
– the challenges of page replacement.
– several popular page-replacement strategies and how they

compare to optimal page replacement.
– the impact of page size on virtual memory performance.
– program behavior under paging.

 2004 Deitel & Associates, Inc. All rights reserved.

11.1 Introduction

• Replacement strategy
– Technique a system employs to select pages for replacement

when memory is full
– Determines where in main memory to place an incoming page or

segment

• Fetch strategy
– Determines when pages or segments should be loaded into main

memory
– Anticipatory fetch strategies

• Use heuristics to predict which pages a process will soon reference
and load those pages or segments

3

 2004 Deitel & Associates, Inc. All rights reserved.

11.2 Locality

• Process tends to reference memory in highly localized
patterns
– In paging systems, processes tend to favor certain subsets of

their pages, and these pages tend to be adjacent to one another in
process’s virtual address space

 2004 Deitel & Associates, Inc. All rights reserved.

11.3 Demand Paging

• Demand paging
– When a process first executes, the system loads into main

memory the page that contains its first instruction
– After that, the system loads a page from secondary storage to

main memory only when the process explicitly references that
page

– Requires a process to accumulate pages one at a time

4

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 11.1 Space-time product under demand paging.

11.3 Demand Paging

 2004 Deitel & Associates, Inc. All rights reserved.

11.4 Anticipatory Paging

• Anticipatory paging
– Operating system attempts to predict the pages a process will

need and preloads these pages when memory space is available
– Anticipatory paging strategies

• Must be carefully designed so that overhead incurred by the
strategy does not reduce system performance

5

 2004 Deitel & Associates, Inc. All rights reserved.

11.5 Page Replacement

• When a process generates a page fault, the memory
manager must locate referenced page in secondary
storage, load it into page frame in main memory and
update corresponding page table entry

• Modified (dirty) bit
– Set to 1 if page has been modified; 0 otherwise
– Help systems quickly determine which pages have been

modified

• Optimal page replacement strategy (OPT or MIN)
– Obtains optimal performance, replaces the page that will not be

referenced again until furthest into the future

 2004 Deitel & Associates, Inc. All rights reserved.

10.6 Page-Replacement Strategies

• A page-replacement strategy is characterized by
– Heuristic it uses to select a page for replacement
– The overhead it incurs

6

 2004 Deitel & Associates, Inc. All rights reserved.

10.6.1 Random Page Replacement

• Random page replacement
– Low-overhead page-replacement strategy that does not

discriminate against particular processes
– Each page in main memory has an equal likelihood of being

selected for replacement
– Could easily select as the next page to replace the page that will

be referenced next

 2004 Deitel & Associates, Inc. All rights reserved.

10.6.2 First-In-First-Out (FIFO) Page Replacement

• FIFO page replacement
– Replace page that has been in the system the longest
– Likely to replace heavily used pages
– Can be implemented with relatively low overhead
– Impractical for most systems

7

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 11.2 First-in-first-out (FIFO) page replacement.

11.6.2 First-In-First-Out (FIFO) Page Replacement

 2004 Deitel & Associates, Inc. All rights reserved.

11.6.3 FIFO Anomaly

• Belady’s (or FIFO) Anomoly
– Certain page reference patterns actually cause more page faults

when number of page frames allocated to a process is increased

8

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 11.3 FIFO anomaly–page faults can increase with page frame allocation.

11.6.3 FIFO Anomaly

 2004 Deitel & Associates, Inc. All rights reserved.

11.6.4 Least-Recently-Used (LRU) Page Replacement

• LRU page replacement
– Exploits temporal locality by replacing the page that has spent

the longest time in memory without being referenced
– Can provide better performance than FIFO
– Increased system overhead
– LRU can perform poorly if the least-recently used page is the

next page to be referenced by a program that is iterating inside a
loop that references several pages

9

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 11.4 Least-recently-used (LRU) page-replacement strategy.

11.6.4 Least-Recently-Used (LRU) Page Replacement

 2004 Deitel & Associates, Inc. All rights reserved.

11.6.5 Least-Frequently-Used (LFU) Page Replacement

• LFU page replacement
– Replaces page that is least intensively referenced
– Based on the heuristic that a page not referenced often is not

likely to be referenced in the future
– Could easily select wrong page for replacement

• A page that was referenced heavily in the past may never be
referenced again, but will stay in memory while newer, active
pages are replaced

10

 2004 Deitel & Associates, Inc. All rights reserved.

11.6.6 Not-Used-Recently (NUR) Page Replacement

• NUR page replacement
– Approximates LRU with little overhead by using referenced bit

and modified bit to determine which page has not been used
recently and can be replaced quickly

– Can be implemented on machines that lack hardware referenced
bit and/or modified bit

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 11.5 Page types under NUR.

11.6.6 Not-Used-Recently (NUR) Page Replacement

11

 2004 Deitel & Associates, Inc. All rights reserved.

11.6.7 Modification to FIFO: Second-Chance and Clock
Page Replacement

• Second chance page replacement
– Examines referenced bit of the oldest page

• If it’s off
– The strategy selects that page for replacement

• If it’s on
– The strategy turns off the bit and moves the page to tail of

FIFO queue
– Ensures that active pages are the least likely to be replaced

• Clock page replacement
– Similar to second chance, but arranges the pages in circular list

instead of linear list

 2004 Deitel & Associates, Inc. All rights reserved.

11.6.8 Far Page Replacement

• Far page replacment
– Creates an access graph that characterizes a process’s reference

patterns
– Replace the unreferenced page that is furthest away from any

referenced page in the access graph
– Performs at near-optimal levels
– Has not been implemented in real systems

• Access graph is complex to search and manage without hardware
support

12

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 11.6 Far page-replacement-strategy access graph.

11.6.8 For Page Replacement

 2004 Deitel & Associates, Inc. All rights reserved.

11.7 Working Set Model

• For a program to run efficiently
– The system must maintain that program’s favored subset of

pages in main memory

• Otherwise
– The system might experience excessive paging activity causing

low processor utilization called thrashing as the program
repeatedly requests pages from secondary storage

13

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 11.7 Storage reference pattern exhibiting locality. (Reprinted by permission
from IBM Systems Journal. © 1971 by International Business Machines Corporation.)

11.7 Working Set Model

 2004 Deitel & Associates, Inc. All rights reserved.

11.7 Working Set Model

• Because processes exhibit locality, increasing the
number of page frames allocated to a process has
little or no effect on its page fault rate at a certain
threshold

14

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 11.8 Dependence of page fault rate on amount of memory for a process’s pages.

11.7 Working Set Model

 2004 Deitel & Associates, Inc. All rights reserved.

11.7 Working Set Model

• The process’s working set of pages, W(t, w), is the set
of pages referenced by the process during the
process-time interval t – w to t.

15

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 11.9 Definition of a process’s working set of pages.

11.7 Working Set Model

 2004 Deitel & Associates, Inc. All rights reserved.

11.7 Working Set Model

• The size of the process’s working set increases
asymptotically to the process’s program size as its
working set window increases

16

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 11.10 Working set size as a function of window size.

11.7 Working Set Model

 2004 Deitel & Associates, Inc. All rights reserved.

11.7 Working Set Model

• As a process transitions between working sets, the
system temporarily maintains in memory pages that
are no longer in the process’s current working set
– Goal of working set memory management is to reduce this

misallocation

17

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 11.11 Main memory allocation under working set memory management.

11.7 Working Set Model

 2004 Deitel & Associates, Inc. All rights reserved.

11.8 Page-Fault-Frequency (PFF) Page Replacement

• Adjusts a process’s resident page set
– Based on frequency at which the process is faulting
– Based on time between page faults, called the process’s

interfault time

• Advantage of PFF over working set page replacement
– Lower overhead

• PFF adjusts resident page set only after each page fault
• Working set mechanism must operate after each memory reference

18

 2004 Deitel & Associates, Inc. All rights reserved.

11.9 Page Release

• Inactive pages can remain in main memory for a long
time until the management strategy detects that the
process no longer needs them
– One way to solve the problem

• Process issues a voluntary page release to free a page frame that it
knows it no longer needs

• Eliminate the delay period caused by letting process gradually pass
the page from its working set

• The real hope is in compiler and operating system support

 2004 Deitel & Associates, Inc. All rights reserved.

11.10 Page Size

• Some systems improve performance and memory utilization
by providing multiple page sizes
– Small page sizes

• Reduce internal fragmentation
• Can reduce the amount of memory required to contain a process’s working

set
• More memory available to other processes

– Large page size
• Reduce wasted memory from table fragmentation
• Enable each TLB entry to map larger region of memory, improving

performance
• Reduce number of I/O operations the system performs to load a process’s

working set into memory
– Multiple page size

• Possibility of external fragmentation

19

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 11.12 Internal fragmentation in a paged and segmented system.

11.10 Page Size

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 11.13 Page sizes in various processor architectures.

11.10 Page Size

20

 2004 Deitel & Associates, Inc. All rights reserved.

11.11 Program Behavior under Paging

• Processes tend to reference a significant portion of
their pages within a short time after execution begins

• They access most of their remaining pages at a slower
rate

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 11.14 Percentage of a process’s pages referenced with time.

11.11 Program Behavior under Paging

21

 2004 Deitel & Associates, Inc. All rights reserved.

11.11 Program Behavior under Paging

• Average interfault time monotonically increases in
general
– The more page frames a process has, the longer the time between

page faults

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 11.15 Dependency of interfault time on the number of page frames allocated
to a process.

11.11 Program Behavior under Paging

22

 2004 Deitel & Associates, Inc. All rights reserved.

11.12Global vs. Local Page Replacement

• Implementing a paged virtual memory system
– Global page-replacement strategies: applied to all processes as a

unit
• Tend to ignore characteristics of individual process behavior
• Global LRU (gLRU) page-replacement strategy

– Replaces the least-recently-used page in entire system
• SEQ (sequence) global page-replacement strategy

– Uses LRU strategy to replace pages until sequence of page
faults to contiguous pages is detected, at which point it uses
most-recently-used (MRU) page-replacement strategy

– Local page-replacement strategies: Consider each process
individually

• Enables system to adjust memory allocation according to relative
importance of each process to improve performance

 2004 Deitel & Associates, Inc. All rights reserved.

11.13 Case Study: Linux Page Replacement

• Linux uses a variation of the clock algorithm to
approximate an LRU page-replacement strategy

• The memory manager uses two linked lists
– Active list

• Contains active pages
• Most-recently used pages are near head of active list

– Inactive list
• Contains inactive pages
• Least-recently used pages near tail of inactive list

– Only pages in the inactive list are replaced

23

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 11.16 Linux page replacement overview.

11.13 Case Study: Linux Page Replacement

