Chapter 10 — Virtual Memory Organization
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Objectives

* After reading this chapter, you should understand:

— the concept of virtual memory.

— paged virtual memory systems.

— segmented virtual memory systems.

— combined segmentation/paging virtual memory systems.

— sharing and protection in virtual memory systems.

— the hardware that makes virtual memory systems feasible.

— the [A-32 Intel architecture virtual memory implementation.
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10.1 Introduction

* Virtual memory
— Solves problem of limited memory space
— Creates the illusion that more memory exists than is available in
system
— Two types of addresses in virtual memory systems
* Virtual addresses
— Referenced by processes
* Physical addresses
— Describes locations in main memory
— Memory management unit (MMU)
* Translates virtual addresses to physical address
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10.1 Introduction

Figure 10.1 Evolution of memory organizations.
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10.2 Virtual Memory: Basic Concepts

» Virtual address space, V'
— Range of virtual addresses that a process may reference

» Real address space, R

— Range of physical addresses available on a particular computer
system

* Dynamic address translation (DAT) mechanism

— Converts virtual addresses to physical addresses during program
execution
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10.2 Virtual Memory: Basic Concepts

* |V] is often much greater than |R]|

— OS must store parts of V' for each process outside of main
memory

— Two-level storage

* OS shuttles portions of /" between main memory (and caches) and
secondary storage
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10.2 Virtual Memory: Basic Concepts

Figure 10.2 Two-level storage.
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10.2 Virtual Memory: Basic Concepts

Figure 10.3 Pieces of address spaces exist in memory and in virtual storage.
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10.3 Block Mapping

* Address translation maps

— Indicate which regions of a process’s virtual address space, V,
are currently in main memory and where they are located
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10.3 Block Mapping
Figure 10.4 Mapping virtual addresses to real addresses.
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10.3 Block Mapping

* Artificial contiguity

— Contiguous virtual addresses may not correspond to contiguous
real memory addresses
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10.3 Block Mapping

Figure 10.5 Artificial contiguity.
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10.3 Block Mapping

* Pages
— Blocks are fixed size

— Technique is called paging

* Segments
— Blocks maybe of different size
— Technique is called segmentation

* Block mapping

— System represents addresses as ordered pairs
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10.3 Block Mapping

Figure 10.6 Virtual address format in a block mapping system.
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10.3 Block Mapping

» Given a virtual address v = (b, d)

— Block map origin register stored in a

— Block number, b, is added to a to locate the appropriate entry in
the block map table

Block map table entry yields the address, b, of the start of block
b in main memory

Displacement d is added to b " to form the real address,
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10.3 Block Mapping

Figure 10.7 Virtual address translation with block mapping.
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10.4 Paging

» Paging uses fixed-size block mapping

— Virtual address in paging system is an ordered pair v = (p, d)

* p is the number of the page in virtual memory on which the
referenced item resides

* d is the displacement from the start of page p at which the
referenced item is located
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10.4 Paging

Figure 10.8 Virtual address format in a pure paging system.

Page number Displacement Virtual address
P d v=(p, d)
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10.4 Paging

* Page frame
— Fixed-size block of main memory

— Begins at a main memory address that is an integral multiple of
fixed page size (p,)
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10.4 Paging

Figure 10.9 Main memory divided into page frames.
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10.4 Paging

Figure 10.10 Correspondence between virtual memory addresses and physical
memory addresses in a pure paging system.
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10.4 Paging

 Page table entry (PTE)

— Indicates that virtual page p corresponds to page frame p’
— Contains a resident bit to indicate if page is in memory
* If so, PTE stores the page’s frame number

» Otherwise, PTE stores the location of the page on secondary
storage
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10.4 Paging

Figure 10.11 Page table entry.
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10.4.1 Paging Address Translation by Direct Mapping

* Direct mapping
— Dynamic address translation under paging is similar to block
address translation
— Process references virtual address v = (p, d)
* DAT adds the process’s page table base address, b, to referenced
page number, p
* b+ p forms the main memory address of the PTE for page p

» System concatenates p * with displacement, d, to form real address,
r
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10.4.1 Paging Address Translation by Direct Mapping

Figure 10.12 Paging address translation by direct mapping.
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10.4.2 Paging Address Translation by Associative Mapping

+ Maintaining entire page table in cache memory is
often not viable
— Due to cost of high-speed, location-addressed cache memory and
relatively large size of programs
* Increase performance of dynamic address translation

— Place entire page table into content-addressed associative
memory

— Every entry in associative memory is searched simultaneously
— Content-addressed cache memory is also prohibitively expensive
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10.4.2 Paging Address Translation by Associative Mapping
Figure 10.13 Paging address translation with pure associative mapping.
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10.4.3 Paging Address Translation with Direct/Associative
Mapping

+ Compromise between cost and performance
— Most PTEs are stored in direct-mapped tables in main memory
— Most-recently-used PTEs are stored in high-speed set-associative
cache memory called a Translation Lookaside Buffer (TLB)

» If PTE is not found in TLB, the DAT mechanism searches the table
in main memory

— Can yield high performance with relatively small TLB due to
locality

* A page referenced by a process recently is likely to be referenced
again soon
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10.4.3 Paging Address Translation with Direct/Associative
Mapping

Figure 10.14 Paging address translation with combined associative/direct mapping.

© 2004 Deitel & Associates, Inc. All rights reserved. - _

10.4.4 Multilevel Page Tables

» Multilevel page tables
— System can store in discontiguous locations in main memory
those portions of process’s page table that the process is using
— Hierarchy of page tables

» Each level containing a table that stores pointers to tables in the
level below

* Bottom-most level comprised of tables containing address
translations

— Can reduce memory overhead compared to direct-mapping
system
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10.4.4 Multilevel Page Tables

Figure 10.15 Multilevel page address translation.
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10.4.5 Inverted Page Tables

 Inverted page tables

— One inverted page table stores one PTE in memory for each page

frame in the system
— Inverted relative to traditional page tables

— Uses hash functions to map virtual page to inverted page table

entry
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10.4.5 Inverted Page Tables

Figure 10.16 Page address translation using inverted page tables.
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10.4.5 Inverted Page Tables

» Hashing can lead to collisions which increase address
translation time by increasing the number of times
memory must be accessed

 Collisions can be reduced by increasing the range of
the hash function

— Cannot increase the size of the inverted page table because it
must store exactly one PTE for each page frame

— Hash anchor table (HAT) increases the range of the hash
function by adding another level of indirection

— Size must be carefully chosen to balance table fragmentation and
performance
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10.4.5 Inverted Page Tables

Figure 10.17 Inverted page table using a hash anchor table.
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10.4.6 Sharing in a Paging System

* Sharing in multiprogramming systems

— Reduces memory consumed by programs that use common data
and/or instructions

— Requires system identify each page as sharable or nonsharable
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10.4.6 Sharing in a Paging System

Figure 10.18 Sharing in a pure paging system.
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10.5 Segmentation

* Segment
— Block of program’s data and/or instructions

— Contains meaningful portion of the program (e.g. procedure,
array, stack)

— Consists of contiguous locations
— Segments need not be the same size nor must they be adjacent to
one another in main memory
» A process may execute while its current instructions
and referenced data are in segments in main memory
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10.5 Segmentation

Figure 10.19 Noncontiguous memory allocation in a real memory segmentation system.
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10.5 Segmentation

* Process references a virtual memory address v = (s, d)
— s is the segment number in virtual memory

— d is the displacement within segment s at which the referenced
item is located
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10.5 Segmentation

Figure 10.20 Virtual address format in a pure segmentation system.
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10.5.1 Segmentation Address Translation by Direct
Mapping

* Process references a virtual memory address v = (s, d)

— DAT adds the process’s segment map table base address, b, to
referenced segment number, s

— b+ s forms the main memory address of the segment map table
entry for segment s

— System adds s to the displacement, d, to form real address,

© 2004 Deitel & Associates, Inc. All rights reserved. - _

21



10.5.1 Segmentation Address Translation by Direct
Mapping

Figure 10.21 Virtual address translation in a pure segmentation system.
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10.5.1 Segmentation Address Translation by Direct
Mapping

» Segment map table entry
— Indicates that segment s starts at real memory address s~
— Contains a resident bit to indicate if segment is in memory
* If so, it stores the segment base address

* Otherwise, it stores the location of the segment on secondary
storage

— Also contains a length field that indicates the size of the segment

* Can be used to prevent a process from referencing addresses
outside the segment
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10.5.1 Segmentation Address Translation by Direct
Mapping

Figure 10.22 Segment map table entry.

Secondary
Segment storage address Base address
resident (if not in main Segment Protection ofsegment
bit memaory) length bits {if in main memory)
r d | 53

]

r=0 if segment is not in main memory
r=1if segment is in main memory

© 2004 Deitel & Associates, Inc. All rights reserved. - _

10.5.2 Sharing in a Segmentation System
 Sharing segments can incur less overhead than

sharing in direct-mapped pure paging system

— Potentially fewer map table entries need to be shared
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10.5.2 Sharing in a Segmentation System
Figure 10.23 Sharing in a pure segmentation system.
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10.5.3 Protection and Access Control in Segmentation
Systems

* One scheme for implementing memory protection in
segmentation systems is memory protection keys

* Protection key
— Associated with process

 If protection key for the processor and the requested
block are the same, the process can access the
segment
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10.5.3 Protection and Access Control in Segmentation
Systems

Figure 10.24 Memory protection with keys in noncontiguous memory allocation
multiprogramming systems.
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10.5.3 Protection and Access Control in Segmentation
Systems

* A more common scheme is to use protection bits that
specify whether a process can read, write, execute
code or append to a segment
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10.5.3 Protection and Access Control in Segmentation
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10.5.3 Protection and Access Control in Segmentation

Systems

Figure 10.26 Combining read, write and execute access to yield useful access control
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10.5.3 Protection and Access Control in Segmentation
Systems

» Protection bits are added to the segment map table
entry and checked when a process references an
address

— If the segment is not in memory, a segment-missing fault is
generated

— Ifd> [, a segment-overflow exception is generated

— If the operation (e.g., read, write, execute, append) is not
allowed, a segment-protection exception is generated
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10.5.3 Protection and Access Control in Segmentation
Systems

Figure 10.27 Segment map table entry with protection bits.
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10.6 Segmentation/Paging Systems

* Segments occupy one or more pages

+ All pages of segment need not be in main memory at

once
 Pages contiguous in virtual memory need not be
contiguous in main memory
* Virtual memory address implemented as ordered
triple v= (s, p, d)

— s is segment number
— p is page number within segment
— d is displacement within page at which desired item located
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10.6.1 Dynamic Address Translation in a
Segmentation/Paging System

Figure 10.28 Virtual address format in a segmentation/paging system.

segment number Page number Displacement Virtual address
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10.6 Segmentation/Paging Systems

* Process references virtual memory address

v:(S’p9d)

— DAT adds the process’s segment map table base address, b, to
referenced segment number, s

— b + s forms the main memory address of the segment map table
entry for segment s

— Segment map table entry stores the base address of the page
table, s’

— Referenced page number, p, is added to s to locate the PTE for
page p, which stores page frame number p”

— System concatenates p " with displacement, d, to form real
address, r
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10.6.1 Dynamic Address Translation in a
Segmentation/Paging System

Figure 10.29 Virtual address translation with combined associative/direct mapping in
a segmentation/paging system.
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10.6.1 Dynamic Address Translation in a
Segmentation/Paging System

Figure 10.30 Table structure for a segmentation/paging system.
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10.6.2 Sharing and Protection in a Segmentation/Paging
System

» Segmentation/paging systems
— Two processes share memory when each process has a segment
map table entry that points to the same page table

 Sharing requires careful management by the
operating system

© 2004 Deitel & Associates, Inc. All rights reserved. - _

30



10.7 Case Study: IA-32 Intel Architecture Virtual Memory

Figure 10.31 Two processes sharing a segment in a segmentation/paging system.
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10.7 Case Study: IA-32 Intel Architecture Virtual Memory

* [A-32 Intel architecture supports either pure
segmentation or segmentation/paging virtual memory

* Logical address space
— Set of addresses contained in each segment
* Segments
— Placed in any available location in system’s linear address space

» Segment address translation

— Performed by direct mapping that uses high-speed processor
registers to store segment map table origin registers in global
descriptor table register or in local descriptor table register

* Paging

— Supports multilevel page tables and mulitple page sizes
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