
1

 2004 Deitel & Associates, Inc.  All rights reserved.

Chapter 10 – Virtual Memory Organization

Outline
10.1  Introduction
10.2 Virtual Memory: Basic Concepts
10.3 Block Mapping
10.4 Paging
10.4.1 Paging Address Translation by Direct Mapping
10.4.2 Paging Address Translation by Associative Mapping
10.4.3 Paging Address Translation with Direct/Associative Mapping
10.4.4 Multilevel Page Tables
10.4.5 Inverted Page Tables
10.4.6 Sharing in a Paging System
10.5 Segmentation
10.5.1 Segmentation Address Translation by Direct Mapping
10.5.2 Sharing in a Segmentation System
10.5.3 Protection and Access Control in Segmentation Systems
10.6 Segmentation/Paging Systems
10.6.1 Dynamic Address Translation in a Segmentation/Paging System
10.6.2 Sharing and Protection in a Segmentation/Paging System
10.7 Case Study: IA-32 Intel Architecture Virtual Memory

 2004 Deitel & Associates, Inc.  All rights reserved.

Objectives

• After reading this chapter, you should understand:
– the concept of virtual memory.
– paged virtual memory systems.
– segmented virtual memory systems.
– combined segmentation/paging virtual memory systems.
– sharing and protection in virtual memory systems.
– the hardware that makes virtual memory systems feasible.
– the IA-32 Intel architecture virtual memory implementation.



2

 2004 Deitel & Associates, Inc.  All rights reserved.

10.1 Introduction

• Virtual memory
– Solves problem of limited memory space
– Creates the illusion that more memory exists than is available in 

system
– Two types of addresses in virtual memory systems

• Virtual addresses
– Referenced by processes

• Physical addresses
– Describes locations in main memory

– Memory management unit (MMU)
• Translates virtual addresses to physical address

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.1 Evolution of memory organizations.

10.1 Introduction



3

 2004 Deitel & Associates, Inc.  All rights reserved.

10.2 Virtual Memory: Basic Concepts

• Virtual address space, V
– Range of virtual addresses that a process may reference

• Real address space, R
– Range of physical addresses available on a particular computer 

system

• Dynamic address translation (DAT) mechanism
– Converts virtual addresses to physical addresses during program 

execution

 2004 Deitel & Associates, Inc.  All rights reserved.

10.2 Virtual Memory: Basic Concepts

• |V| is often much greater than |R|
– OS must store parts of V for each process outside of main 

memory
– Two-level storage 

• OS shuttles portions of V between main memory (and caches) and 
secondary storage



4

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.2 Two-level storage.

10.2 Virtual Memory: Basic Concepts

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.3 Pieces of address spaces exist in memory and in virtual storage.

10.2 Virtual Memory: Basic Concepts



5

 2004 Deitel & Associates, Inc.  All rights reserved.

10.3 Block Mapping

• Address translation maps
– Indicate which regions of a process’s virtual address space, V, 

are currently in main memory and where they are located

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.4 Mapping virtual addresses to real addresses.

10.3 Block Mapping



6

 2004 Deitel & Associates, Inc.  All rights reserved.

10.3 Block Mapping

• Artificial contiguity
– Contiguous virtual addresses may not correspond to contiguous 

real memory addresses

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.5 Artificial contiguity.

10.3 Block Mapping



7

 2004 Deitel & Associates, Inc.  All rights reserved.

10.3 Block Mapping

• Pages
– Blocks are fixed size
– Technique is called paging

• Segments
– Blocks maybe of different size
– Technique is called segmentation

• Block mapping
– System represents addresses as ordered pairs

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.6 Virtual address format in a block mapping system.

10.3 Block Mapping



8

 2004 Deitel & Associates, Inc.  All rights reserved.

10.3 Block Mapping

• Given a virtual address v = (b, d)
– Block map origin register stored in a
– Block number, b, is added to a to locate the appropriate entry in 

the block map table
– Block map table entry yields the address, b´, of the start of block 

b in main memory
– Displacement d is added to b´ to form the real address, r

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.7 Virtual address translation with block mapping.

10.3 Block Mapping



9

 2004 Deitel & Associates, Inc.  All rights reserved.

10.4 Paging

• Paging uses fixed-size block mapping
– Virtual address in paging system is an ordered pair v = (p, d)

• p is the number of the page in virtual memory on which the 
referenced item resides

• d is the displacement from the start of page p at which the 
referenced item is located

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.8 Virtual address format in a pure paging system.

10.4 Paging



10

 2004 Deitel & Associates, Inc.  All rights reserved.

10.4 Paging

• Page frame
– Fixed-size block of main memory
– Begins at a main memory address that is an integral multiple of 

fixed page size (ps)

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.9 Main memory divided into page frames.

10.4 Paging



11

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.10 Correspondence between virtual memory addresses and physical 
memory addresses in a pure paging system.

10.4 Paging

 2004 Deitel & Associates, Inc.  All rights reserved.

10.4 Paging

• Page table entry (PTE)
– Indicates that virtual page p corresponds to page frame p´
– Contains a resident bit to indicate if page is in memory

• If so, PTE stores the page’s frame number
• Otherwise, PTE stores the location of the page on secondary 

storage



12

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.11 Page table entry.

10.4 Paging

 2004 Deitel & Associates, Inc.  All rights reserved.

10.4.1 Paging Address Translation by Direct Mapping

• Direct mapping
– Dynamic address translation under paging is similar to block 

address translation
– Process references virtual address v = (p, d)

• DAT adds the process’s page table base address, b, to referenced 
page number, p

• b + p forms the main memory address of the PTE for page p
• System concatenates p´ with displacement, d, to form real address, 

r



13

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.12 Paging address translation by direct mapping.

10.4.1 Paging Address Translation by Direct Mapping

 2004 Deitel & Associates, Inc.  All rights reserved.

10.4.2 Paging Address Translation by Associative Mapping

• Maintaining entire page table in cache memory is 
often not viable
– Due to cost of high-speed, location-addressed cache memory and 

relatively large size of programs

• Increase performance of dynamic address translation
– Place entire page table into content-addressed associative 

memory
– Every entry in associative memory is searched simultaneously
– Content-addressed cache memory is also prohibitively expensive



14

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.13 Paging address translation with pure associative mapping.

10.4.2 Paging Address Translation by Associative Mapping

 2004 Deitel & Associates, Inc.  All rights reserved.

10.4.3 Paging Address Translation with Direct/Associative 
Mapping

• Compromise between cost and performance
– Most PTEs are stored in direct-mapped tables in main memory
– Most-recently-used PTEs are stored in high-speed set-associative 

cache memory called a Translation Lookaside Buffer (TLB)
• If PTE is not found in TLB, the DAT mechanism searches the table

in main memory
– Can yield high performance with relatively small TLB due to 

locality
• A page referenced by a process recently is likely to be referenced 

again soon



15

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.14 Paging address translation with combined associative/direct mapping.

10.4.3 Paging Address Translation with Direct/Associative 
Mapping

 2004 Deitel & Associates, Inc.  All rights reserved.

10.4.4 Multilevel Page Tables

• Multilevel page tables
– System can store in discontiguous locations in main memory 

those portions of process’s page table that the process is using
– Hierarchy of page tables

• Each level containing a table that stores pointers to tables in the 
level below

• Bottom-most level comprised of tables containing address 
translations

– Can reduce memory overhead compared to direct-mapping 
system



16

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.15 Multilevel page address translation.

10.4.4 Multilevel Page Tables

 2004 Deitel & Associates, Inc.  All rights reserved.

10.4.5 Inverted Page Tables

• Inverted page tables
– One inverted page table stores one PTE in memory for each page 

frame in the system
– Inverted relative to traditional page tables
– Uses hash functions to map virtual page to inverted page table 

entry



17

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.16 Page address translation using inverted page tables.

10.4.5 Inverted Page Tables

 2004 Deitel & Associates, Inc.  All rights reserved.

10.4.5 Inverted Page Tables

• Hashing can lead to collisions which increase address 
translation time by increasing the number of times 
memory must be accessed

• Collisions can be reduced by increasing the range of 
the hash function
– Cannot increase the size of the inverted page table because it 

must store exactly one PTE for each page frame
– Hash anchor table (HAT) increases the range of the hash 

function by adding another level of indirection
– Size must be carefully chosen to balance table fragmentation and

performance



18

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.17 Inverted page table using a hash anchor table.

10.4.5 Inverted Page Tables

 2004 Deitel & Associates, Inc.  All rights reserved.

10.4.6 Sharing in a Paging System

• Sharing in multiprogramming systems
– Reduces memory consumed by programs that use common data 

and/or instructions
– Requires system identify each page as sharable or nonsharable



19

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.18 Sharing in a pure paging system.

10.4.6 Sharing in a Paging System

 2004 Deitel & Associates, Inc.  All rights reserved.

10.5 Segmentation

• Segment
– Block of program’s data and/or instructions
– Contains meaningful portion of the program (e.g. procedure, 

array, stack)
– Consists of contiguous locations
– Segments need not be the same size nor must they be adjacent to 

one another in main memory

• A process may execute while its current instructions 
and referenced data are in segments in main memory



20

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.19 Noncontiguous memory allocation in a real memory segmentation system.

10.5 Segmentation

 2004 Deitel & Associates, Inc.  All rights reserved.

10.5 Segmentation

• Process references a virtual memory address v = (s, d)
– s is the segment number in virtual memory
– d is the displacement within segment s at which the referenced 

item is located



21

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.20 Virtual address format in a pure segmentation system.

10.5 Segmentation

 2004 Deitel & Associates, Inc.  All rights reserved.

10.5.1 Segmentation Address Translation by Direct 
Mapping

• Process references a virtual memory address v = (s, d)
– DAT adds the process’s segment map table base address, b, to 

referenced segment number, s
– b + s forms the main memory address of the segment map table 

entry for segment s
– System adds s´ to the displacement, d, to form real address, r



22

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.21 Virtual address translation in a pure segmentation system.

10.5.1 Segmentation Address Translation by Direct 
Mapping

 2004 Deitel & Associates, Inc.  All rights reserved.

10.5.1 Segmentation Address Translation by Direct 
Mapping

• Segment map table entry
– Indicates that segment s starts at real memory address s´
– Contains a resident bit to indicate if segment is in memory

• If so, it stores the segment base address
• Otherwise, it stores the location of the segment on secondary 

storage
– Also contains a length field that indicates the size of the segment

• Can be used to prevent a process from referencing addresses 
outside the segment



23

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.22 Segment map table entry.

10.5.1 Segmentation Address Translation by Direct 
Mapping

 2004 Deitel & Associates, Inc.  All rights reserved.

10.5.2 Sharing in a Segmentation System

• Sharing segments can incur less overhead than 
sharing in direct-mapped pure paging system
– Potentially fewer map table entries need to be shared



24

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.23 Sharing in a pure segmentation system.

10.5.2 Sharing in a Segmentation System

 2004 Deitel & Associates, Inc.  All rights reserved.

10.5.3 Protection and Access Control in Segmentation 
Systems

• One scheme for implementing memory protection in 
segmentation systems is memory protection keys

• Protection key
– Associated with process

• If protection key for the processor and the requested 
block are the same, the process can access the 
segment                                                         



25

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.24 Memory protection with keys in noncontiguous memory allocation 
multiprogramming systems.

10.5.3 Protection and Access Control in Segmentation 
Systems

 2004 Deitel & Associates, Inc.  All rights reserved.

10.5.3 Protection and Access Control in Segmentation 
Systems

• A more common scheme is to use protection bits that 
specify whether a process can read, write, execute 
code or append to a segment                                     



26

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.25 Access control types.

10.5.3 Protection and Access Control in Segmentation 
Systems

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.26 Combining read, write and execute access to yield useful access control 
modes.

10.5.3 Protection and Access Control in Segmentation 
Systems



27

 2004 Deitel & Associates, Inc.  All rights reserved.

10.5.3 Protection and Access Control in Segmentation 
Systems

• Protection bits are added to the segment map table 
entry and checked when a process references an 
address
– If the segment is not in memory, a segment-missing fault is 

generated
– If d > l, a segment-overflow exception is generated
– If the operation (e.g., read, write, execute, append) is not 

allowed, a segment-protection exception is generated                            

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.27 Segment map table entry with protection bits.

10.5.3 Protection and Access Control in Segmentation 
Systems



28

 2004 Deitel & Associates, Inc.  All rights reserved.

10.6 Segmentation/Paging Systems

• Segments occupy one or more pages
• All pages of segment need not be in main memory at 

once
• Pages contiguous in virtual memory need not be 

contiguous in main memory
• Virtual memory address implemented as ordered 

triple v = (s, p, d)
– s is segment number
– p is page number within segment
– d is displacement within page at which desired item located

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.28 Virtual address format in a segmentation/paging system.

10.6.1 Dynamic Address Translation in a 
Segmentation/Paging System



29

 2004 Deitel & Associates, Inc.  All rights reserved.

10.6 Segmentation/Paging Systems

• Process references virtual memory address 
v = (s, p, d)

– DAT adds the process’s segment map table base address, b, to 
referenced segment number, s

– b + s forms the main memory address of the segment map table 
entry for segment s

– Segment map table entry stores the base address of the page 
table, s´

– Referenced page number, p, is added to s´ to locate the PTE for 
page p, which stores page frame number p´

– System concatenates p´ with displacement, d, to form real 
address, r

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.29 Virtual address translation with combined associative/direct mapping in 
a segmentation/paging system.

10.6.1 Dynamic Address Translation in a 
Segmentation/Paging System



30

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.30 Table structure for a segmentation/paging system.

10.6.1 Dynamic Address Translation in a 
Segmentation/Paging System

 2004 Deitel & Associates, Inc.  All rights reserved.

10.6.2 Sharing and Protection in a Segmentation/Paging 
System

• Segmentation/paging systems
– Two processes share memory when each process has a segment 

map table entry that points to the same page table

• Sharing requires careful management by the 
operating system



31

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 10.31 Two processes sharing a segment in a segmentation/paging system.

10.7 Case Study: IA-32 Intel Architecture Virtual Memory

 2004 Deitel & Associates, Inc.  All rights reserved.

10.7 Case Study: IA-32 Intel Architecture Virtual Memory

• IA-32 Intel architecture supports either pure 
segmentation or segmentation/paging virtual memory

• Logical address space
– Set of addresses contained in each segment

• Segments
– Placed in any available location in system’s linear address space

• Segment address translation
– Performed by direct mapping that uses high-speed processor 

registers to store segment map table origin registers in global 
descriptor table register or in local descriptor table register

• Paging
– Supports multilevel page tables and mulitple page sizes


