
1

 2004 Deitel & Associates, Inc. All rights reserved.

Chapter 9 – Real Memory Organization and
Management

Outline
9.1 Introduction
9.2 Memory Organization
9.3 Memory Management
9.4 Memory Hierarchy
9.5 Memory Management Strategies
9.6 Contiguous vs. Noncontiguous Memory Allocation
9.7 Single-User Contiguous Memory Allocation
9.7.1 Overlays
9.7.2 Protection in a Single-User System
9.7.3 Single-Stream Batch Processing
9.8 Fixed-Partition Multiprogramming
9.9 Variable-Partition Multiprogramming
9.9.1 Variable-Partition Characteristics
9.9.2 Memory Placement Strategies
9.10 Multiprogramming with Memory Swapping

 2004 Deitel & Associates, Inc. All rights reserved.

Objectives

• After reading this chapter, you should understand:
– the need for real (also called physical) memory management.
– the memory hierarchy.
– contiguous and noncontiguous memory allocation.
– fixed- and variable-partition multiprogramming.
– memory swapping.
– memory placement strategies.

2

 2004 Deitel & Associates, Inc. All rights reserved.

9.1 Introduction

• Memory divided into tiers
– Main memory

• Relatively expensive
• Relatively small capacity
• High-performance

– Secondary storage
• Cheap
• Large capacity
• Slow

– Main memory requires careful management

 2004 Deitel & Associates, Inc. All rights reserved.

9.2 Memory Organization

• Memory can be organized in different ways
– One process uses entire memory space
– Each process gets its own partition in memory

• Dynamically or statically allocated

• Trend: Application memory requirements tend to
increase over time to fill main memory capacities

3

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.1 Microsoft Windows operating system memory requirements.

9.2 Memory Organization

 2004 Deitel & Associates, Inc. All rights reserved.

9.3 Memory Management

• Strategies for obtaining optimal memory performance
– Performed by memory manager

• Which process will stay in memory?
• How much memory will each process have access to?
• Where in memory will each process go?

4

 2004 Deitel & Associates, Inc. All rights reserved.

9.4 Memory Hierarchy

• Main memory
– Should store currently needed program instructions and data

only

• Secondary storage
– Stores data and programs that are not actively needed

• Cache memory
– Extremely high speed
– Usually located on processor itself
– Most-commonly-used data copied to cache for faster access
– Small amount of cache still effective for boosting performance

• Due to temporal locality

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.2 Hierarchical memory organization.

9.4 Memory Hierarchy

5

 2004 Deitel & Associates, Inc. All rights reserved.

9.5 Memory Management Strategies

• Strategies divided into several categories
– Fetch strategies

• Demand or anticipatory
• Decides which piece of data to load next

– Placement strategies
• Decides where in main memory to place incoming data

– Replacement strategies
• Decides which data to remove from main memory to make more

space

 2004 Deitel & Associates, Inc. All rights reserved.

9.6 Contiguous vs. Noncontiguous Memory Allocation

• Ways of organizing programs in memory
– Contiguous allocation

• Program must exist as a single block of contiguous addresses
• Sometimes it is impossible to find a large enough block
• Low overhead

– Noncontiguous allocation
• Program divided into chunks called segments
• Each segment can be placed in different part of memory
• Easier to find “holes” in which a segment will fit
• Increased number of processes that can exist simultaneously in

memory offsets the overhead incurred by this technique

6

 2004 Deitel & Associates, Inc. All rights reserved.

9.7 Single-User Contiguous Memory Allocation

• One user had control of entire machine
– Resources did not need to be shared
– Originally no operating systems on computer

• Programmer wrote code to perform resource management
– Input-Output Control Systems (IOCS)

• Libraries of prewritten code to manage I/O devices
• Precursor to operating systems

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.3 Single-user contiguous memory allocation.

9.7 Single-User Contiguous Memory Allocation

7

 2004 Deitel & Associates, Inc. All rights reserved.

9.7.1 Overlays

• Overlays: Programming technique to overcome
contiguous allocation limits
– Program divided into logical sections
– Only place currently active section in memory
– Severe drawbacks

• Difficult to organize overlays to make efficient use of main
memory

• Complicates modifications to programs
– Virtual memory accomplishes similar goal

• Like IOCS, VM shields programmers from complex issues such as
memory management

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.4 Overlay structure.

9.7.1 Overlays

8

 2004 Deitel & Associates, Inc. All rights reserved.

9.7.2 Protection in a Single-User Environment

• Operating system must not be damaged by programs
– System cannot function if operating system overwritten
– Boundary register

• Contains address where program’s memory space begins
• Any memory accesses outside boundary are denied
• Can only be set by privileged commands
• Applications can access OS memory to execute OS procedures

using system calls, which places the system in executive mode

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.5 Memory protection with single-user contiguous memory allocation.

9.7.2 Protection in a Single-User Environment

9

 2004 Deitel & Associates, Inc. All rights reserved.

9.7.3 Single-Stream Batch Processing

• Early systems required significant setup time
– Wasted time and resources
– Automating setup and teardown improved efficiency

• Batch processing
– Job stream processor reads job control languages

• Defines each job and how to set it up

 2004 Deitel & Associates, Inc. All rights reserved.

9.8 Fixed-Partition Multiprogramming

• I/O requests can tie up a processor for long periods
– Multiprogramming is one solution

• Process not actively using a processor should relinquish it to others
• Requires several processes to be in memory at once

10

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.6 Processor utilization on a single-user system. [Note: In many single-user
jobs, I/O waits are much longer relative to processor utilization periods indicated
in this diagram.]

9.8 Fixed-Partition Multiprogramming

 2004 Deitel & Associates, Inc. All rights reserved.

9.8 Fixed-Partition Multiprogramming

• Fixed-partition multiprogramming
– Each active process receives a fixed-size block of memory
– Processor rapidly switches between each process
– Multiple boundary registers protect against damage

11

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.7 Fixed-partition multiprogramming with absolute translation and loading.

9.8 Fixed-Partition Multiprogramming

 2004 Deitel & Associates, Inc. All rights reserved.

9.8 Fixed-Partition Multiprogramming

• Drawbacks to fixed partitions
– Early implementations used absolute addresses

• If the requested partition was full, code could not load
• Later resolved by relocating compilers

12

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.8 Memory waste under fixed-partition multiprogramming with absolute
translation and loading.

9.8 Fixed-Partition Multiprogramming

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.8 Fixed-partition multiprogramming with relocatable translation and loading.

9.8 Fixed-Partition Multiprogramming

13

 2004 Deitel & Associates, Inc. All rights reserved.

9.8 Fixed-Partition Multiprogramming

• Protection
– Can be implemented by boundary registers, called base and limit

(also called low and high)

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.10 Memory protection in contiguous-allocation multiprogramming systems.

9.8 Fixed-Partition Multiprogramming

14

 2004 Deitel & Associates, Inc. All rights reserved.

9.8 Fixed-Partition Multiprogramming

• Drawbacks to fixed partitions (Cont.)
– Internal fragmentation

• Process does not take up entire partition, wasting memory
– Incurs more overhead

• Offset by higher resource utilization

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.11 Internal fragmentation in a fixed-partition multiprogramming system.

9.8 Fixed-Partition Multiprogramming

15

 2004 Deitel & Associates, Inc. All rights reserved.

9.9 Variable-Partition Multiprogramming

• System designers found fixed partitions too restrictive
– Internal fragmentation
– Potential for processes to be too big to fit anywhere
– Variable partitions designed as replacement

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.12 Initial partition assignments in variable-partition programming.

9.9 Variable-Partition Multiprogramming

16

 2004 Deitel & Associates, Inc. All rights reserved.

9.9.1 Variable-Partition Characteristics

• Jobs placed where they fit
– No space wasted initially
– Internal fragmentation impossible

• Partitions are exactly the size they need to be
– External fragmentation can occur when processes removed

• Leave holes too small for new processes
• Eventually no holes large enough for new processes

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.13 Memory “holes” in variable-partition multiprogramming.

9.9.1 Variable-Partition Characteristics

17

 2004 Deitel & Associates, Inc. All rights reserved.

9.9.1 Variable-Partition Characteristics

• Several ways to combat external fragmentation
– Coalescing

• Combine adjacent free blocks into one large block
• Often not enough to reclaim significant amount of memory

– Compaction
• Sometimes called garbage collection (not to be confused with GC

in object-oriented languages)
• Rearranges memory into a single contiguous block free space and a

single contiguous block of occupied space
• Makes all free space available
• Significant overhead

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.14 Coalescing memory “holes” in variable-partition multiprogramming.

9.9.1 Variable-Partition Characteristics

18

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.15 Memory compaction in variable-partition multiprogramming.

9.9.1 Variable-Partition Characteristics

 2004 Deitel & Associates, Inc. All rights reserved.

9.9.2 Memory Placement Strategies

• Where to put incoming processes
– First-fit strategy

• Process placed in first hole of sufficient size found
• Simple, low execution-time overhead

– Best-fit strategy
• Process placed in hole that leaves least unused space around it
• More execution-time overhead

– Worst-fit strategy
• Process placed in hole that leaves most unused space around it
• Leaves another large hole, making it more likely that another

process can fit in the hole

19

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.16 First-fit, best-fit and worst-fit memory placement strategies (Part 1 of 3).

9.9.2 Memory Placement Strategies

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.16 First-fit, best-fit and worst-fit memory placement strategies (Part 2 of 3).

9.9.2 Memory Placement Strategies

20

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.16 First-fit, best-fit and worst-fit memory placement strategies (Part 3 of 3).

9.9.2 Memory Placement Strategies

 2004 Deitel & Associates, Inc. All rights reserved.

9.10 Multiprogramming with Memory Swapping

• Not necessary to keep inactive processes in memory
– Swapping

• Only put currently running process in main memory
– Others temporarily moved to secondary storage
– Maximizes available memory
– Significant overhead when switching processes

• Better yet: keep several processes in memory at once
– Less available memory
– Much faster response times
– Similar to paging

21

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 9.17 Multiprogramming in a swapping system in which only a single process at
a time is in main memory.

9.10 Multiprogramming with Memory Swapping

