
1

 2004 Deitel & Associates, Inc. All rights reserved.

Chapter 7 – Deadlock and Indefinite
Postponement

Outline
7.1 Introduction
7.2 Examples of Deadlock
7.2.1 Traffic Deadlock
7.2.2 Simple Resource Deadlock
7.2.3 Deadlock in Spooling Systems
7.2.4 Example: Dining Philosophers
7.3 Related Problem: Indefinite Postponement
7.4 Resource Concepts
7.5 Four Necessary Conditions for Deadlock
7.6 Deadlock Solutions
7.7 Deadlock Prevention
7.7.1 Denying the “Wait-For” Condition
7.7.2 Denying the “No-Preemption Condition
7.7.3 Denying the “Circular-Wait” Condition

 2004 Deitel & Associates, Inc. All rights reserved.

Chapter 7 – Deadlock and Indefinite Postponement

Outline (continued)
7.8 Deadlock Avoidance with Dijkstra’s Banker’s Algorithm
7.8.1 Example of a Safe State
7.8.2 Example of an Unsafe State
7.8.3 Example of Safe-State-to-Unsafe-State Transition
7.8.4 Banker’s Algorithm Resource Allocation
7.8.5 Weaknesses in the Banker’s Algorithm
7.9 Deadlock Detection
7.9.1 Resource-Allocation Graphs
7.9.2 Reduction of Resource-Allocation Graphs
7.10 Deadlock Recovery
7.11 Deadlock Strategies in Current and Future Systems

2

 2004 Deitel & Associates, Inc. All rights reserved.

Objectives

• After reading this chapter, you should understand:
– the problem of deadlock.
– the four necessary conditions for deadlock to exist.
– the problem of indefinite postponement.
– the notions of deadlock prevention, avoidance, detection and

recovery.
– algorithms for deadlock avoidance and detection.
– how systems can recover from deadlocks.

 2004 Deitel & Associates, Inc. All rights reserved.

7.1 Introduction

• Deadlock
– A process or thread is waiting for a particular event that will not

occur

• System deadlock
– One or more processes are deadlocked

3

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 7.1 Traffic deadlock example.

7.2.1 Traffic Deadlock

 2004 Deitel & Associates, Inc. All rights reserved.

7.2.2 Simple Resource Deadlock

• Most deadlocks develop because of the normal
contention for dedicated resources

• Circular wait is characteristic of deadlocked systems

4

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 7.2 Resource deadlock example. This system is deadlocked because each
process holds a resource being requested by the other process and neither process
is willing to release the resource it holds.

7.2.2 Simple Resource Deadlock

 2004 Deitel & Associates, Inc. All rights reserved.

7.2.3 Deadlock in Spooling Systems

• Spooling systems are prone to deadlock
• Common solution

– Restrain input spoolers so that when the spooling file begins to
reach some saturation threshold, the spoolers do not read in more
print jobs

• Today’s systems
– Printing begins before the job is completed so that a full spooling

file can be emptied even while a job is still executing
– Same concept has been applied to streaming audio and video

5

 2004 Deitel & Associates, Inc. All rights reserved.

7.2.4 Example: Dining Philosophers

• Problem statement:
Five philosophers sit around a circular table. Each leads a
simple life alternating between thinking and eating spaghetti. In
front of each philosopher is a dish of spaghetti that is constantly
replenished by a dedicated wait staff. There are exactly five forks
on the table, one between each adjacent pair of philosophers.
Eating spaghetti (in the most proper manner) requires that a
philosopher use both adjacent forks (simultaneously). Develop a
concurrent program free of deadlock and indefinite
postponement that models the activities of the philosophers.

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 7.3 Dining philosopher behavior.

7.2.4 Example: Dining Philosophers

6

 2004 Deitel & Associates, Inc. All rights reserved.

7.2.4 Example: Dining Philosophers

• Constraints:
– To prevent philosophers from starving:

• Free of deadlock
• Free of indefinite postponement

– Enforce mutual exclusion
• Two philosophers cannot use the same fork at once

• The problems of mutual exclusion, deadlock and
indefinite postponement lie in the implementation of
method eat.

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 7.4 Implementation of method eat.

7.2.4 Example: Dining Philosophers

7

 2004 Deitel & Associates, Inc. All rights reserved.

7.3 Related Problem: Indefinite Postponement

• Indefinite postponement
– Also called indefinite blocking or starvation
– Occurs due to biases in a system’s resource scheduling policies

• Aging
– Technique that prevents indefinite postponement by increasing

process’s priority as it waits for resource

 2004 Deitel & Associates, Inc. All rights reserved.

7.4 Resource Concepts

• Preemptible resources (e.g. processors and main memory)
– Can be removed from a process without loss of work

• Nonpreemptible resources (e.g. tape drives and optical
scanners)
– Cannot be removed from the processes to which they are assigned

without loss of work

• Reentrant code
– Cannot be changed while in use
– May be shared by several processes simultaneously

• Serially reusable code
– May be changed but is reinitialized each time it is used
– May be used by only one process at a time

8

 2004 Deitel & Associates, Inc. All rights reserved.

7.5 Four Necessary Conditions for Deadlock

• Mutual exclusion condition
– Resource may be acquired exclusively by only one process at a time

• Wait-for condition (hold-and-wait condition)
– Process that has acquired an exclusive resource may hold that resource

while the process waits to obtain other resources

• No-preemption condition
– Once a process has obtained a resource, the system cannot remove it

from the process’s control until the process has finished using the
resource

• Circular-wait condition
– Two or more processes are locked in a “circular chain” in which each

process is waiting for one or more resources that the next process in the
chain is holding

 2004 Deitel & Associates, Inc. All rights reserved.

7.6 Deadlock Solutions

• Four major areas of interest in deadlock research
– Deadlock prevention
– Deadlock avoidance
– Deadlock detection
– Deadlock recovery

9

 2004 Deitel & Associates, Inc. All rights reserved.

7.7 Deadlock Prevention

• Deadlock prevention
– Condition a system to remove any possibility of deadlocks

occurring
– Deadlock cannot occur if any one of the four necessary

conditions is denied
– First condition (mutual exclusion) cannot be broken

 2004 Deitel & Associates, Inc. All rights reserved.

7.7.1 Denying the “Wait-For” Condition

• When denying the “wait-for condition”
– All of the resources a process needs to complete its task must be

requested at once
– This leads to inefficient resource allocation

10

 2004 Deitel & Associates, Inc. All rights reserved.

7.7.2 Denying the “No-Preemption” Condition

• When denying the “no-preemption” condition
– Processes may lose work when resources are preempted
– This can lead to substantial overhead as processes must be

restarted

 2004 Deitel & Associates, Inc. All rights reserved.

7.7.3 Denying the “Circular-Wait” Condition

• Denying the “circular-wait” condition:
– Uses a linear ordering of resources to prevent deadlock
– More efficient resource utilization than the other strategies

• Drawbacks
– Not as flexible or dynamic as desired
– Requires the programmer to determine the ordering or resources

for each system

11

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 7.5 Havender’s linear ordering of resources for preventing deadlock.

7.7.3 Denying the “Circular-Wait” Condition

 2004 Deitel & Associates, Inc. All rights reserved.

7.8 Deadlock Avoidance with Dijkstra’s Banker’s Algorithm

• Banker’s Algorithm
– Impose less stringent conditions than in deadlock prevention in

an attempt to get better resource utilization
– Safe state

• Operating system can guarantee that all current processes can
complete their work within a finite time

– Unsafe state
• Does not imply that the system is deadlocked, but that the OS

cannot guarantee that all current processes can complete their work
within a finite time

12

 2004 Deitel & Associates, Inc. All rights reserved.

7.8 Deadlock Avoidance with Dijkstra’s Banker’s Algorithm

• Banker’s Algorithm (cont.)
– Requires that resources be allocated to processes only when the

allocations result in safe states.
– It has a number of weaknesses (such as requiring a fixed number

of processes and resources) that prevent it from being
implemented in real systems

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 7.6 Safe state.

7.8.2 Example of an Unsafe State

13

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 7.7 Unsafe state.

7.8.2 Example of an Unsafe State

 2004 Deitel & Associates, Inc. All rights reserved.

7.8.3 Example of Safe-State-to-Unsafe-State Transition

• Safe-state-to-unsafe-state transition:
– Suppose the current state of a system is safe, as shown in

Fig. 7.6.
– The current value of a is 2.
– Now suppose that process P3 requests an additional resource

14

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 7.8 Safe-state-to-unsafe-state transition.

7.8.3 Example of Safe-State-to-Unsafe-State Transition

 2004 Deitel & Associates, Inc. All rights reserved.

7.8.4 Banker’s Algorithm Resource Allocation

• Is the state in the next slide safe?

15

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 7.9 State description of three processes.

7.8.4 Banker’s Algorithm Resource Allocation

 2004 Deitel & Associates, Inc. All rights reserved.

7.8.4 Banker’s Algorithm Resource Allocation

• Answer:
– There is no guarantee that all of these processes will finish

• P2 will be able to finish by using up the two remaining resources
• Once P2 is done, there are only three available resources left
• This is not enough to satisfy either P1’s claim of 4 or P3’s claim of

five

16

 2004 Deitel & Associates, Inc. All rights reserved.

7.8.5 Weaknesses in the Banker’s Algorithm

• Weaknesses
– Requires there be a fixed number of resource to allocate
– Requires the population of processes to be fixed
– Requires the banker to grant all requests within “finite time”
– Requires that clients repay all loans within “finite time”
– Requires processes to state maximum needs in advance

 2004 Deitel & Associates, Inc. All rights reserved.

7.9 Deadlock Detection

• Deadlock detection
– Used in systems in which deadlocks can occur
– Determines if deadlock has occurred
– Identifies those processes and resources involved in the deadlock
– Deadlock detection algorithms can incur significant runtime

overhead

17

 2004 Deitel & Associates, Inc. All rights reserved.

7.9.1 Resource-Allocation Graphs

• Resource-allocation graphs
– Squares

• Represent processes
– Large circles

• Represent classes of identical resources
– Small circles drawn inside large circles

• Indicate separate identical resources of each class

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 7.10 Resource-allocation and request graphs.

7.9.1 Resource-Allocation Graphs

18

 2004 Deitel & Associates, Inc. All rights reserved.

7.9.2 Reduction of Resource-Allocation Graphs

• Graph reductions
– If a process’s resource requests may be granted, the graph may

be reduced by that process
– If a graph can be reduced by all its processes, there is no

deadlock
– If a graph cannot be reduced by all its processes, the irreducible

processes constitute the set of deadlocked processes in the graph

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 7.11 Graph reductions determining that no deadlock exists.

7.9.2 Reduction of Resource-Allocation Graphs

19

 2004 Deitel & Associates, Inc. All rights reserved.

7.10 Deadlock Recovery

• Deadlock recovery
– Clears deadlocks from system so that deadlocked processes may

complete their execution and free their resources

• Suspend/resume mechanism
– Allows system to put a temporary hold on a process
– Suspended processes can be resumed without loss of work

• Checkpoint/rollback
– Facilitates suspend/resume capabilities
– Limits the loss of work to the time the last checkpoint was made

 2004 Deitel & Associates, Inc. All rights reserved.

7.11 Deadlock Strategies in Current and Future Systems

• Deadlock is viewed as limited annoyance in personal
computer systems
– Some systems implement basic prevention methods suggested by

Havender
– Some others ignore the problem, because checking deadlocks

would reduce systems’ performance

• Deadlock continues to be an important research area

