Chapter 7 — Deadlock and Indefinite
Postponement

Outline
71
7.2
7.21
7.2.2
7.23
7.24
7.3
7.4
7.5
7.6
7.7
7.71
7.7.2
7.7.3

Introduction

Examples of Deadlock

Traffic Deadlock

Simple Resource Deadlock

Deadlock in Spooling Systems

Example: Dining Philosophers

Related Problem: Indefinite Postponement
Resource Concepts

Four Necessary Conditions for Deadlock
Deadlock Solutions

Deadlock Prevention

Denying the “Wait-For” Condition
Denying the “No-Preemption Condition
Denying the “Circular-Wait” Condition

© 2004 Deitel & Associates, Inc. All rights reserved. - -

Chapter 7 — Deadlock and Indefinite Postponement

Outline (continued)

7.8
7.81
7.8.2
7.8.3
7.8.4
7.8.5
7.9
7.91
7.9.2
7.10
7.1

Deadlock Avoidance with Dijkstra’s Banker’s Algorithm
Example of a Safe State

Example of an Unsafe State

Example of Safe-State-to-Unsafe-State Transition
Banker’s Algorithm Resource Allocation
Weaknesses in the Banker’s Algorithm

Deadlock Detection

Resource-Allocation Graphs

Reduction of Resource-Allocation Graphs
Deadlock Recovery

Deadlock Strategies in Current and Future Systems

© 2004 Deitel & Associates, Inc. All rights reserved. - -

Objectives

 After reading this chapter, you should understand:

the problem of deadlock.
the four necessary conditions for deadlock to exist.
the problem of indefinite postponement.

the notions of deadlock prevention, avoidance, detection and
recovery.

algorithms for deadlock avoidance and detection.

how systems can recover from deadlocks.

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.1 Introduction

* Deadlock

— A process or thread is waiting for a particular event that will not
occur

» System deadlock

One or more processes are deadlocked

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.2.1 Traffic Deadlock

Figure 7.1 Traffic deadlock example.

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.2.2 Simple Resource Deadlock

» Most deadlocks develop because of the normal
contention for dedicated resources

* Circular wait is characteristic of deadlocked systems

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.2.2 Simple Resource Deadlock

Figure 7.2 Resource deadlock example. This system is deadlocked because each
process holds a resource being requested by the other process and neither process
is willing to release the resource it holds.

Resource Ry is \ Process Pz is
allocated to R - requesting
process Py. resource Rq.
k| L
Py P2

R

Process Py is Resource R;
requesting | Ry is allocated to
resource Rj. / process P;.

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.2.3 Deadlock in Spooling Systems

» Spooling systems are prone to deadlock

« Common solution
— Restrain input spoolers so that when the spooling file begins to
reach some saturation threshold, the spoolers do not read in more
print jobs
* Today’s systems

— Printing begins before the job is completed so that a full spooling
file can be emptied even while a job is still executing

— Same concept has been applied to streaming audio and video

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.2.4 Example: Dining Philosophers

* Problem statement:

Five philosophers sit around a circular table. Each leads a
simple life alternating between thinking and eating spaghetti. In
front of each philosopher is a dish of spaghetti that is constantly
replenished by a dedicated wait staff. There are exactly five forks
on the table, one between each adjacent pair of philosophers.
Eating spaghetti (in the most proper manner) requires that a
philosopher use both adjacent forks (simultaneously). Develop a
concurrent program free of deadlock and indefinite
postponement that models the activities of the philosophers.

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.2.4 Example: Dining Philosophers

Figure 7.3 Dining philosopher behavior.

void typicalPhilosopher()

{
while ¢ true)

think(Q);
eat();
}

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.2.4 Example: Dining Philosophers

* Constraints:
— To prevent philosophers from starving:
* Free of deadlock
* Free of indefinite postponement
— Enforce mutual exclusion
» Two philosophers cannot use the same fork at once
e The problems of mutual exclusion, deadlock and
indefinite postponement lie in the implementation of
method eat.

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.2.4 Example: Dining Philosophers

Figure 7.4 Implementation of method eat.

void eat()

{
pickUpLeftFork();
pickUpRightFork();
eatForSomeTime() ;
putDownRightFork();
putDownLeftFork() ;

} // eat

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.3 Related Problem: Indefinite Postponement

* Indefinite postponement
— Also called indefinite blocking or starvation
— Occurs due to biases in a system’s resource scheduling policies
+ Aging
— Technique that prevents indefinite postponement by increasing
process’s priority as it waits for resource

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.4 Resource Concepts

» Preemptible resources (e.g. processors and main memory)
— Can be removed from a process without loss of work
» Nonpreemptible resources (e.g. tape drives and optical
scanners)

— Cannot be removed from the processes to which they are assigned
without loss of work

* Reentrant code
— Cannot be changed while in use
— May be shared by several processes simultaneously
+ Serially reusable code
— May be changed but is reinitialized each time it is used
— May be used by only one process at a time

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.5 Four Necessary Conditions for Deadlock

* Mutual exclusion condition
— Resource may be acquired exclusively by only one process at a time
» Wait-for condition (hold-and-wait condition)

— Process that has acquired an exclusive resource may hold that resource
while the process waits to obtain other resources

* No-preemption condition

— Once a process has obtained a resource, the system cannot remove it
from the process’s control until the process has finished using the
resource

 Circular-wait condition

— Two or more processes are locked in a “circular chain” in which each
process is waiting for one or more resources that the next process in the
chain is holding

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.6 Deadlock Solutions

» Four major areas of interest in deadlock research
— Deadlock prevention
— Deadlock avoidance
— Deadlock detection
— Deadlock recovery

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.7 Deadlock Prevention

» Deadlock prevention
— Condition a system to remove any possibility of deadlocks
occurring

— Deadlock cannot occur if any one of the four necessary
conditions is denied

— First condition (mutual exclusion) cannot be broken

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.7.1 Denying the “Wait-For” Condition

* When denying the “wait-for condition”

— All of the resources a process needs to complete its task must be
requested at once

— This leads to inefficient resource allocation

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.7.2 Denying the “No-Preemption” Condition

* When denying the “no-preemption” condition
— Processes may lose work when resources are preempted

— This can lead to substantial overhead as processes must be
restarted

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.7.3 Denying the “Circular-Wait” Condition

* Denying the “circular-wait” condition:

— Uses a linear ordering of resources to prevent deadlock

— More efficient resource utilization than the other strategies
» Drawbacks

— Not as flexible or dynamic as desired

— Requires the programmer to determine the ordering or resources
for each system

© 2004 Deitel & Associates, Inc. All rights reserved. - _

10

7.7.3 Denying the “Circular-Wait” Condition

Figure 7.5 Havender’s linear ordering of resources for preventing deadlock.

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.8 Deadlock Avoidance with Dijkstra’s Banker’'s Algorithm

* Banker’s Algorithm
— Impose less stringent conditions than in deadlock prevention in
an attempt to get better resource utilization
— Safe state
» Operating system can guarantee that all current processes can
complete their work within a finite time
— Unsafe state

* Does not imply that the system is deadlocked, but that the OS
cannot guarantee that all current processes can complete their work
within a finite time

© 2004 Deitel & Associates, Inc. All rights reserved. - _

11

7.8 Deadlock Avoidance with Dijkstra’s Banker’s Algorithm

» Banker’s Algorithm (cont.)

— Requires that resources be allocated to processes only when the
allocations result in safe states.

— It has a number of weaknesses (such as requiring a fixed number
of processes and resources) that prevent it from being
implemented in real systems

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.8.2 Example of an Unsafe State

Figure 7.6 Safe state.
max(F,) loant F,) claimi” ;)
Process (maximuny need) (eurrent lvan) (eurrent clainm)
P 4 1 3
P2 6 4 2
P3 8 5 3
Total resources, t, = 12 Available resources, a, = 2

© 2004 Deitel & Associates, Inc. All rights reserved. - _

12

7.8.2 Example of an Unsafe State

Figure 7.7 Unsafe state.

max(F,) loan{ F,) elaimd F,)
Frocess (niaxinumy need) (eurrent loan) (eurrent claimt)
P 10 8 7
P, 5 2 3
P3 3 1 2

Total resources, t, = 12 Available resources, a, = 1

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.8.3 Example of Safe-State-to-Unsafe-State Transition

Safe-state-to-unsafe-state transition:

— Suppose the current state of a system is safe, as shown in
Fig. 7.6.

— The current value of a is 2.

— Now suppose that process P, requests an additional resource

© 2004 Deitel & Associates, Inc. All rights reserved. - _

13

7.8.3 Example of Safe-State-to-Unsafe-State Transition

Figure 7.8 Safe-state-to-unsafe-state transition.

max(P,) loant P,) clomd’ P,)
Frocess (maximum need) (eurrent lban) (eurrent claim)
P4 4 1 3
P2 6 4 2
P3 8 6 2
Total resources, t, = 12 Available resources, a, = 1

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.8.4 Banker’s Algorithm Resource Allocation

» [s the state in the next slide safe?

© 2004 Deitel & Associates, Inc. All rights reserved. - _

14

7.8.4 Banker’s Algorithm Resource Allocation

Figure 7.9 State description of three processes.

Process max(F,) loant F,) el P,)
Ps 5 1 4
P2 3 ! 2
P3 10 5 5
a=2

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.8.4 Banker’s Algorithm Resource Allocation

* Answer:
— There is no guarantee that all of these processes will finish

P, will be able to finish by using up the two remaining resources
* Once P, is done, there are only three available resources left

* This is not enough to satisfy either P,’s claim of 4 or P;’s claim of
five

© 2004 Deitel & Associates, Inc. All rights reserved. - _

15

7.8.5 Weaknesses in the Banker’s Algorithm

* Weaknesses
— Requires there be a fixed number of resource to allocate
— Requires the population of processes to be fixed
— Requires the banker to grant all requests within “finite time”
— Requires that clients repay all loans within “finite time”

— Requires processes to state maximum needs in advance

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.9 Deadlock Detection

* Deadlock detection
— Used in systems in which deadlocks can occur
— Determines if deadlock has occurred
— Identifies those processes and resources involved in the deadlock

— Deadlock detection algorithms can incur significant runtime
overhead

© 2004 Deitel & Associates, Inc. All rights reserved. - _

16

7.9.1 Resource-Allocation Graphs

» Resource-allocation graphs

— Squares
» Represent processes

— Large circles

» Represent classes of identical resources

— Small circles drawn inside large circles

* Indicate separate identical resources of each class

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.9.1 Resource-Allocation Graphs

Figure 7.10 Resource-allocation and request graphs.

Py Ry
R Py
- -
p R3 Py
Ra

— b

© 2004 Deitel & Associates, Inc. All rights reserved. - _

Py

{a) Pyisrequesting a
resource of type Ry, of
which there are two
identical resources,

{b) O two identical
resou f type Ry has
been allocated to process Py,

(e) Process Py is requesting
resource Ry, which has been
allocated to process Py

{d} Process Pg has been
allocated resource Rg that is
being requested by process
Pg that has been allocated
resource Ry that is being
requested by process Ps
({the classic “cireular wait”).

17

7.9.2 Reduction of Resource-Allocation Graphs

* Graph reductions

— Ifa process’s resource requests may be granted, the graph may
be reduced by that process

— If a graph can be reduced by all its processes, there is no
deadlock

— If a graph cannot be reduced by all its processes, the irreducible
processes constitute the set of deadlocked processes in the graph

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.9.2 Reduction of Resource-Allocation Graphs

Figure 7.11 Graph reductions determining that no deadlock exists.

ns NG \
0

-

© 2004 Deitel & Associates, Inc. All rights reserved. - _

18

7.10 Deadlock Recovery

* Deadlock recovery
— Clears deadlocks from system so that deadlocked processes may
complete their execution and free their resources
* Suspend/resume mechanism
— Allows system to put a temporary hold on a process
— Suspended processes can be resumed without loss of work

* Checkpoint/rollback

— Facilitates suspend/resume capabilities
— Limits the loss of work to the time the last checkpoint was made

© 2004 Deitel & Associates, Inc. All rights reserved. - _

7.11 Deadlock Strategies in Current and Future Systems

* Deadlock is viewed as limited annoyance in personal
computer systems

— Some systems implement basic prevention methods suggested by
Havender

— Some others ignore the problem, because checking deadlocks
would reduce systems’ performance

» Deadlock continues to be an important research area

© 2004 Deitel & Associates, Inc. All rights reserved. - _

19

