Chapter 6 — Concurrent Programming

Outline

6.1 Introduction

6.2 Monitors

6.2.1 Condition Variables

6.2.2 Simple Resource Allocation with Monitors

6.2.3 Monitor Example: Circular Buffer

6.2.4 Monitor Example: Readers and Writers

6.3 Java Monitors

6.4 Java Multithreading Case Study, Part Ill:
Producer/Consumer Relationship in Java

6.5 Java Multithreading Case Study, Part IV:

Circular Buffer in Java

© 2004 Deitel & Associates, Inc. All rights reserved. - -

Objectives

* After reading this chapter, you should understand:
— how monitors synchronize access to data.
— how condition variables are used with monitors.

— solutions for classic problems in concurrent programming such
as readers and writers and circular buffer.

— Java monitors.

— remote procedure calls.

© 2004 Deitel & Associates, Inc. All rights reserved. - -

6.2.1 Introduction

* Recent interest in concurrent programming languages
— Naturally express solutions to inherently parallel problems

— Due to proliferation of multiprocessing systems, distributed
systems and massively parallel architectures

— More complex than standard programs
* More time required to write, test and debug

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.2 Monitors
* Monitor
— Contains data and procedures needed to allocate shared
resources

» Accessible only within the monitor
» No way for threads outside monitor to access monitor data

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.2 Monitors

* Resource allocation using monitors
— Thread must call monitor entry routine
— Mutual exclusion is rigidly enforced at monitor boundary
— A thread that tries to enter monitor when it is in use must wait

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.2 Monitors

* Threads return resources through monitors as well
— Monitor entry routine calls signal
* Alerts one waiting thread to acquire resource and enter monitor
— Higher priority given to waiting threads than ones newly arrived
* Avoids indefinite postponement

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.2.1 Condition Variables

» Before a thread can reenter the monitor, the thread
calling signal must first exit monitor
— Signal-and-exit monitor
* Requires thread to exit the monitor immediately upon signaling
+ Signal-and-continue monitor

— Allows thread inside monitor to signal that the monitor will soon
become available

— Still maintain lock on the monitor until thread exits monitor

— Thread can exit monitor by waiting on a condition variable or by
completing execution of code protected by monitor

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.2.2 Simple Resource Allocation with Monitors

» Thread inside monitor may need to wait outside until
another thread performs an action inside monitor

* Monitor associates separate condition variable with
distinct situation that might cause thread to wait

— Every condition variable has an associated queue

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.2.2 Simple Resource Allocation with Monitors

Figure 6.1 Simple resource allocation with a monitor in pseudocode.

boolean inUse = false;
Condition available;

monitorEntry void getResource()
f ¢ inUse)
{
wait(available };

}

inUse = true;

monitorEntry void returnResource()
{

inUse fa

signal{ available);

1

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.2.3 Monitor Example: Circular Buffer

* Circular buffer implementation of the solution to
producer/consumer problem

Producer deposits data in successive elements of array

Consumer removes the elements in the order in which they were
deposited (FIFO)

Producer can be several items ahead of consumer

If the producer fills last element of array, it must “wrap around”
and begin depositing data in the first element of array

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.2.3 Monitor Example: Circular Buffer

* Due to the fixed size of a circular buffer
— Producer will occasionally find all array elements full, in which
case the producer must wait until consumer empties an array
element
— Consumer will occasionally find all array elements empty, in
which case the consumer must wait until producer deposits data
into an array element

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.2.3 Monitor Example: Circular Buffer

Figure 6.2 Monitor pseudocode implementation of a circular buffer. (Part 1 of 2.)

writerPosition =
readerPosition
nt occupiedSlots =
Condition hasData;
Condition hasSpace;

har circularBuffer([] rar[40 I
nt :
11

1itorEntry void putChar(har slotData)

f (occupiedSlots == FFE]

wait(hasSpace);

circularBuffer[writerPosition] = slotData;
++occupiedSlots;
writerPosition = (writerPosition + 1) %

signal(hasData };

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.2.3 Monitor Example: Circular Buffer

Figure 6.2 Monitor pseudocode implementation of a circular buffer. (Part 2 of 2.)

monitorEntry void getChar(outputParameter slotData)

i

if (occupiedSlots == 0)
1 {
wait(hasData);

}

slotData = circularBuffer[readPosition];
occupiedSlots--; ¢ V lat
readerPosition = (readerPosition + 1) % BUFFER_SIZE;
signal(hasSpace); f f t

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.2.4 Monitor Example: Readers and Writers

» Readers
— Read data, but do not change contents of data
— Multiple readers can access the shared data at once

— When a new reader calls a monitor entry routine, it is allowed to
proceed as long as no thread is writing and no writer thread is
waiting to write

— After the reader finishes reading, it calls a monitor entry routine
to signal the next waiting reader to proceed, causing a “chain
reaction”

* Writers

— Can modify data
— Must have exclusive access

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.2.4 Monitor Example: Readers and Writers
Figure 6.3 Monitor pseudocode for solving the readers and writers problem. (Part 1 of 3.)

int readers =

boolean writeLock = false;
Condition canWrite;
Condition canRead;

monitorEntry void beginRead()

{
if (writeLock || queue(canWrite))
: wait(canRead);
}
++readers;
signal{ canRead);
1

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.2.4 Monitor Example: Readers and Writers

Figure 6.3 Monitor pseudocode for solving the readers and writers problem. (Part 2 of 3.)

wonitorEntry void endRead()
{
--readers;
if (readers == 0)
{
signal (canWrite);
} i
}
monitorEntry void beginWrite()
{
if (readers > 0 || writeLock)
{
wait(canWrite);
}

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.2.4 Monitor Example: Readers and Writers

Figure 6.3 Monitor pseudocode for solving the readers and writers problem. (Part 3 of 3.)

writeLock = true;

}

monitorEntry void endWrite()

writeLock = false;

f (queue(canRead))

signal(canRead);

signal(canWrite);

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.3 Java Monitors

* Java monitors

— Primary mechanism for providing mutual exclusion and
synchronization in multithreaded Java applications

— Signal-and-continue monitors

* Allow a thread to signal that the monitor will soon become
available

« Maintain a lock on monitor until thread exits monitor
* Keyword synchronized

— Imposes mutual exclusion on an object in Java

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.4 Java Multithreading Case Study, Part IlI:
Producer/Consumer Relationship in Java

+ Javawait method
— Calling thread releases lock on monitor
» Waits for condition variable
— After calling wait, thread is placed in wait set
* Thread remains in wait set until signaled by another thread

* Condition variable is implicit in Java

— A thread may be signaled, reenter the monitor and find that the
condition on which it waited has not been met

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.4 Java Multithreading Case Study, Part llI:
Producer/Consumer Relationship in Java

Figure 6.4 synchronizedBuffer synchronizes access to a shared integer. (Part 1 of 4.)

ss SynchronizedBuffer i ements Buffer

nt buffer =
t occupiedBuffers

| set(int value)
{
5tring name = Thread.currentThread().getName();
e { occupiedBuffers ==
{
System.err.printin{ name + i X3
displayState(ffer f + name + 11t)

wait();

© 2004 Deitel & Associates, Inc. All rights reserved. - _

10

6.4 Java Multithreading Case Study, Part IlI:
Producer/Consumer Relationship in Java

Figure 6.4 synchronizedBuffer synchronizes access to a shared integer. (Part 2 of 4.)

{ InterruptedException excepticn)

exceprion,.printicackTracel)

baiFFar = b leie:
ceupiedBuff

displayStatel name -+ + buffer 3:

T

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.4 Java Multithreading Case Study, Part llI:
Producer/Consumer Relationship in Java

Figure 6.4 synchronizedBuffer synchronizes access to a shared integer. (Part 3 of 4.)

1t get()
S5tring name Thread. currentThread() .getName();

e { occupiedBuffers ==

System.err.printin{ name + tries to r i
displayState(f empt + name + t)}
wait();

}

atch { InterruptedException exception)

exception.printStackTrace();

© 2004 Deitel & Associates, Inc. All rights reserved. - _

11

6.4 Java Multithreading Case Study, Part IlI:
Producer/Consumer Relationship in Java

Figure 6.4 synchronizedBuffer synchronizes access to a shared integer. (Part 4 of 4.)

--occupiedBuffers;
displayState(name + reads " + buffer)};
notify();

return buffer;

}

public void displayState(String operation)

{
StringBuffer outputlLine = new StringBuffer(operation);
outputline.setLength(40);
outputLine.append(buffer + "‘t\t" + occupiedBuffers);
System.err.printin(outputLine J;
System.err.printin();

} Shod A

© 2004 Deitel & Associates, Inc. All rights reserved. - -

6.4 Java Multithreading Case Study, Part llI:
Producer/Consumer Relationship in Java

Figure 6.5 Threads modifying a shared object with synchronization. (Part 1 of 8.)

public class SharedBufferTest2
{
public static void main(String [] args)

{

SynchronizedBuffer sharedlLocation = new SynchronizedBuffer();

StringBuffer columnHeads =

new StringBuffer("Operati i
columnHeads.setLength(40);
columnHeads . append(C
System.err.printin{ columnHeads);
System.err.printin();
sharedLocation.displayState("Init tate”)3

unt”)

21 Producer producer = new Producer({ sharedLocation);
Consumer consumer = new Consumer({ sharedLocation);

producer.start();

© 2004 Deitel & Associates, Inc. All rights reserved. - -

12

6.4 Java Multithreading Case Study, Part IlI:
Producer/Consumer Relationship in Java

Figure 6.5 Threads modifying a shared object with synchronization. (Part 2 of 8.)

consumer.start();

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.4 Java Multithreading Case Study, Part llI:
Producer/Consumer Relationship in Java

Figure 6.5 Threads modifying a shared object with synchronization. (Part 3 of 8.)
Sample Oulpul 1.

© 2004 Deitel & Associates, Inc. All rights reserved. - _

13

6.4 Java Multithreading Case Study, Part IlI:
Producer/Consumer Relationship in Java

Figure 6.5 Threads modifying a shared object with synchronization. (Part 4 of 8.)

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.4 Java Multithreading Case Study, Part llI:
Producer/Consumer Relationship in Java

Figure 6.5 Threads modifying a shared object with synchronization. (Part 5 of 8.)
Sample Oufpul 2.

© 2004 Deitel & Associates, Inc. All rights reserved. - _

14

6.4 Java Multithreading Case Study, Part IlI:
Producer/Consumer Relationship in Java

Figure 6.5 Threads modifying a shared object with synchronization. (Part 6 of 8.)

Sample Oufput 2.

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.4 Java Multithreading Case Study, Part llI:
Producer/Consumer Relationship in Java

Figure 6.5 Threads modifying a shared object with synchronization. (Part 7 of 8.)

Sample Output Z (Lont.).

© 2004 Deitel & Associates, Inc. All rights reserved. - _

15

6.4 Java Multithreading Case Study, Part IlI:
Producer/Consumer Relationship in Java

Figure 6.5 Threads modifying a shared object with synchronization. (Part 8 of 8.)

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.5 Java Multithreading Case Study, Part IV:

Circular Buffer in Java

* Threads issue signals via methods notify or
notifyAll

- notify method

» wakes one thread waiting to enter the monitor

- notifyAll method
* Wakes all waiting threads

© 2004 Deitel & Associates, Inc. All rights reserved. - _

16

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

Figure 6.6 synchronizedBuffer controls access to a shared array of integers. (Part 1 of 7.)

public class CircularBuffer implements Buffer
{
private int buffers[] = { . g =1 };
11 private int occupiedBuffers = 0;
12
private int readLocation = 0;
private int writelLocation = 0;
public synchronized void set(int value)

21 String name = Thread.currentThread() .getName() ;

© 2004 Deitel & Associates, Inc. All rights reserved. - -

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

Figure 6.6 synchronizedBuffer controls access to a shared array of integers. (Part 2 of 7.)

while (occupiedBuffers == buffers.length)
{
try
System.err.printin(Ffe a1, +
name + vaits., X3
wait();
c ch { InterruptedException exception)
{
exception.printStackTrace();
}
buffers[writeLocation] = value;
System.err.printin(+ name + L +
buffers[writeLocation] +) -

© 2004 Deitel & Associates, Inc. All rights reserved. - -

17

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

Figure 6.6 synchronizedBuffer controls access to a shared array of integers. (Part 3 of 7.)
++occupiedBuffers;

writelLocation = (writeLocation + 1) % buffers.length;

System.err.printin(createStateOutput());

notify();
} d
public synchronized int get()
{

String name = Thread.currentThread().getName();
while (occupiedBuffers == 0)
69 .[

© 2004 Deitel & Associates, Inc. All rights reserved. - -

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

Figure 6.6 synchronizedBuffer controls access to a shared array of integers. (Part 4 of 7.)

{
System.err.printin{ "\nAll buffers empty. g
name + " waits.");
wait();
} 2 y
catch (InterruptedException exception)
{

exception.printStackTrace();
1 .

nt readValue = buffers[readLocation];

System.err.printin([+ name + " read +
1 readvValue + " ");

© 2004 Deitel & Associates, Inc. All rights reserved. - -

18

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

Figure 6.6 synchronizedBuffer controls access to a shared array of integers. (Part 5 of 7.)

--occupiedBuffers;
readlLocation = (readlLocation + 1) % buffers.length;

System.err.printin{ createStateOutput());

notify();
return readValue;
} : ;
public String createStateQutput()
i
String output = uffers occupied +

occupiedBuffers + "

for (int 1 = 0; i < buffers.length; ++i)
{

16 output += " " + buffers[i] + "

117 } ’

© 2004 Deitel & Associates, Inc. All rights reserved. - -

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

Figure 6.6 synchronizedBuffer controls access to a shared array of integers. (Part 6 of 7.)

1 output += "\n
i.
122 for (int i = 0; i < buffers.length; ++i)
123 I
124 output += "
output += "\n
for (int i = 0; i < buffers.length; ++i)
{
if (i == writeLocation &&
135 writeLocation == readlLocation)
136 {
137 output += " WR ";
1 : :

© 2004 Deitel & Associates, Inc. All rights reserved. - -

19

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

Figure 6.6 synchronizedBuffer controls access to a shared array of integers. (Part 7 of 7.)

else if (i == writeLocation)
{
output +=
}
else if (i == readLocation)
{
output +=
}
else
{
output +=
} |
1
output += "\n";

return output;
} i

© 2004 Deitel & Associates, Inc. All rights reserved. - -

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

Figure 6.7 CcircularBufferTest instantiates producer and consumer threads. (Part 1 of 9.)

public class CircularBufferTest

{
public static void main (String args[])
{
CircularBuffer sharedLocation = new CircularBuffer();

System.err.printin(sharedlLocation.createStateOQutput() J;

Producer producer = new Producer(sharedLocation);
20 Consumer consumer = new Consumer(sharedLocation);

© 2004 Deitel & Associates, Inc. All rights reserved. - -

20

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

Figure 6.7 CircularBufferTest instantiates producer and consumer threads. (Part 2 of 9.)

producer.startij;
Consumer.startiil;

Sartigre Cuilpu.

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

Figure 6.7 CcircularBufferTest instantiates producer and consumer threads. (Part 3 of 9.)

© 2004 Deitel & Associates, Inc. All rights reserved. - _

21

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

Figure 6.7 CircularBufferTest instantiates producer and consumer threads. (Part 4 of 9.)

Sample Oulpui (Cont-).

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

Figure 6.7 CcircularBufferTest instantiates producer and consumer threads. (Part 5 of 9.)

© 2004 Deitel & Associates, Inc. All rights reserved. - _

22

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

Figure 6.7 CircularBufferTest instantiates producer and consumer threads. (Part 6 of 9.)

Sample Oufput (Lont.):

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

Figure 6.7 CircularBufferTest instantiates producer and consumer threads. (Part 7 of 9.)

© 2004 Deitel & Associates, Inc. All rights reserved. - _

23

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

Figure 6.7 CircularBufferTest instantiates producer and consumer threads. (Part 8 of 9.)

Sample Oufpit (Lont.):

© 2004 Deitel & Associates, Inc. All rights reserved. - _

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

Figure 6.7 CcircularBufferTest instantiates producer and consumer threads. (Part 9 of 9.)

© 2004 Deitel & Associates, Inc. All rights reserved. - _

24

