
1

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Chapter 6 – Concurrent Programming

Outline
6.1 Introduction
6.2 Monitors
6.2.1 Condition Variables
6.2.2 Simple Resource Allocation with Monitors
6.2.3 Monitor Example: Circular Buffer
6.2.4 Monitor Example: Readers and Writers
6.3 Java Monitors
6.4 Java Multithreading Case Study, Part III:

Producer/Consumer Relationship in Java
6.5 Java Multithreading Case Study, Part IV:

Circular Buffer in Java

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Objectives

• After reading this chapter, you should understand:
– how monitors synchronize access to data.
– how condition variables are used with monitors.
– solutions for classic problems in concurrent programming such

as readers and writers and circular buffer.
– Java monitors.
– remote procedure calls.

2

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

6.2.1 Introduction

• Recent interest in concurrent programming languages
– Naturally express solutions to inherently parallel problems
– Due to proliferation of multiprocessing systems, distributed

systems and massively parallel architectures
– More complex than standard programs

• More time required to write, test and debug

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

6.2 Monitors

• Monitor
– Contains data and procedures needed to allocate shared

resources
• Accessible only within the monitor
• No way for threads outside monitor to access monitor data

3

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

6.2 Monitors

• Resource allocation using monitors
– Thread must call monitor entry routine
– Mutual exclusion is rigidly enforced at monitor boundary
– A thread that tries to enter monitor when it is in use must wait

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

6.2 Monitors

• Threads return resources through monitors as well
– Monitor entry routine calls signal

• Alerts one waiting thread to acquire resource and enter monitor
– Higher priority given to waiting threads than ones newly arrived

• Avoids indefinite postponement

4

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

6.2.1 Condition Variables

• Before a thread can reenter the monitor, the thread
calling signal must first exit monitor
– Signal-and-exit monitor

• Requires thread to exit the monitor immediately upon signaling

• Signal-and-continue monitor
– Allows thread inside monitor to signal that the monitor will soon

become available
– Still maintain lock on the monitor until thread exits monitor
– Thread can exit monitor by waiting on a condition variable or by

completing execution of code protected by monitor

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

6.2.2 Simple Resource Allocation with Monitors

• Thread inside monitor may need to wait outside until
another thread performs an action inside monitor

• Monitor associates separate condition variable with
distinct situation that might cause thread to wait
– Every condition variable has an associated queue

5

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.1 Simple resource allocation with a monitor in pseudocode.

6.2.2 Simple Resource Allocation with Monitors

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

6.2.3 Monitor Example: Circular Buffer

• Circular buffer implementation of the solution to
producer/consumer problem
– Producer deposits data in successive elements of array
– Consumer removes the elements in the order in which they were

deposited (FIFO)
– Producer can be several items ahead of consumer
– If the producer fills last element of array, it must “wrap around”

and begin depositing data in the first element of array

6

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

6.2.3 Monitor Example: Circular Buffer

• Due to the fixed size of a circular buffer
– Producer will occasionally find all array elements full, in which

case the producer must wait until consumer empties an array
element

– Consumer will occasionally find all array elements empty, in
which case the consumer must wait until producer deposits data
into an array element

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

6.2.3 Monitor Example: Circular Buffer

Figure 6.2 Monitor pseudocode implementation of a circular buffer. (Part 1 of 2.)

7

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.2 Monitor pseudocode implementation of a circular buffer. (Part 2 of 2.)

6.2.3 Monitor Example: Circular Buffer

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

6.2.4 Monitor Example: Readers and Writers

• Readers
– Read data, but do not change contents of data
– Multiple readers can access the shared data at once
– When a new reader calls a monitor entry routine, it is allowed to

proceed as long as no thread is writing and no writer thread is
waiting to write

– After the reader finishes reading, it calls a monitor entry routine
to signal the next waiting reader to proceed, causing a “chain
reaction”

• Writers
– Can modify data
– Must have exclusive access

8

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.3 Monitor pseudocode for solving the readers and writers problem. (Part 1 of 3.)

6.2.4 Monitor Example: Readers and Writers

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.3 Monitor pseudocode for solving the readers and writers problem. (Part 2 of 3.)

6.2.4 Monitor Example: Readers and Writers

9

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.3 Monitor pseudocode for solving the readers and writers problem. (Part 3 of 3.)

6.2.4 Monitor Example: Readers and Writers

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

6.3 Java Monitors

• Java monitors
– Primary mechanism for providing mutual exclusion and

synchronization in multithreaded Java applications
– Signal-and-continue monitors

• Allow a thread to signal that the monitor will soon become
available

• Maintain a lock on monitor until thread exits monitor

• Keyword synchronized
– Imposes mutual exclusion on an object in Java

10

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

6.4 Java Multithreading Case Study, Part III:
Producer/Consumer Relationship in Java

• Java wait method
– Calling thread releases lock on monitor

• Waits for condition variable
– After calling wait, thread is placed in wait set

• Thread remains in wait set until signaled by another thread

• Condition variable is implicit in Java
– A thread may be signaled, reenter the monitor and find that the

condition on which it waited has not been met

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.4 SynchronizedBuffer synchronizes access to a shared integer. (Part 1 of 4.)

6.4 Java Multithreading Case Study, Part III:
Producer/Consumer Relationship in Java

11

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.4 SynchronizedBuffer synchronizes access to a shared integer. (Part 2 of 4.)

6.4 Java Multithreading Case Study, Part III:
Producer/Consumer Relationship in Java

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.4 SynchronizedBuffer synchronizes access to a shared integer. (Part 3 of 4.)

6.4 Java Multithreading Case Study, Part III:
Producer/Consumer Relationship in Java

12

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.4 SynchronizedBuffer synchronizes access to a shared integer. (Part 4 of 4.)

6.4 Java Multithreading Case Study, Part III:
Producer/Consumer Relationship in Java

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.5 Threads modifying a shared object with synchronization. (Part 1 of 8.)

6.4 Java Multithreading Case Study, Part III:
Producer/Consumer Relationship in Java

13

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.5 Threads modifying a shared object with synchronization. (Part 2 of 8.)

6.4 Java Multithreading Case Study, Part III:
Producer/Consumer Relationship in Java

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.5 Threads modifying a shared object with synchronization. (Part 3 of 8.)

6.4 Java Multithreading Case Study, Part III:
Producer/Consumer Relationship in Java

14

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.5 Threads modifying a shared object with synchronization. (Part 4 of 8.)

6.4 Java Multithreading Case Study, Part III:
Producer/Consumer Relationship in Java

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.5 Threads modifying a shared object with synchronization. (Part 5 of 8.)

6.4 Java Multithreading Case Study, Part III:
Producer/Consumer Relationship in Java

15

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

6.4 Java Multithreading Case Study, Part III:
Producer/Consumer Relationship in Java

Figure 6.5 Threads modifying a shared object with synchronization. (Part 6 of 8.)

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.5 Threads modifying a shared object with synchronization. (Part 7 of 8.)

6.4 Java Multithreading Case Study, Part III:
Producer/Consumer Relationship in Java

16

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.5 Threads modifying a shared object with synchronization. (Part 8 of 8.)

6.4 Java Multithreading Case Study, Part III:
Producer/Consumer Relationship in Java

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

• Threads issue signals via methods notify or
notifyAll

– notify method
• wakes one thread waiting to enter the monitor

– notifyAll method
• Wakes all waiting threads

17

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.6 SynchronizedBuffer controls access to a shared array of integers. (Part 1 of 7.)

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.6 SynchronizedBuffer controls access to a shared array of integers. (Part 2 of 7.)

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

18

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.6 SynchronizedBuffer controls access to a shared array of integers. (Part 3 of 7.)

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.6 SynchronizedBuffer controls access to a shared array of integers. (Part 4 of 7.)

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

19

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.6 SynchronizedBuffer controls access to a shared array of integers. (Part 5 of 7.)

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.6 SynchronizedBuffer controls access to a shared array of integers. (Part 6 of 7.)

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

20

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.6 SynchronizedBuffer controls access to a shared array of integers. (Part 7 of 7.)

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.7 CircularBufferTest instantiates producer and consumer threads. (Part 1 of 9.)

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

21

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

Figure 6.7 CircularBufferTest instantiates producer and consumer threads. (Part 2 of 9.)

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.7 CircularBufferTest instantiates producer and consumer threads. (Part 3 of 9.)

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

22

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.7 CircularBufferTest instantiates producer and consumer threads. (Part 4 of 9.)

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.7 CircularBufferTest instantiates producer and consumer threads. (Part 5 of 9.)

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

23

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.7 CircularBufferTest instantiates producer and consumer threads. (Part 6 of 9.)

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.7 CircularBufferTest instantiates producer and consumer threads. (Part 7 of 9.)

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

24

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.7 CircularBufferTest instantiates producer and consumer threads. (Part 8 of 9.)

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

 2004 Deitel & Associates, Inc. All rights reserved. 2004 Deitel & Associates, Inc. All rights reserved.

Figure 6.7 CircularBufferTest instantiates producer and consumer threads. (Part 9 of 9.)

6.5 Java Multithreading Case Study, Part IV:
Circular Buffer in Java

