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Objectives

• After reading this chapter, you should understand:
– the challenges of synchronizing concurrent processes and 

threads.
– critical sections and the need for mutual exclusion.
– how to implement mutual exclusion primitives in software.
– hardware mutual exclusion primitives.
– semaphore usage and implementation.
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5.1 Introduction

• Concurrent execution
– More than one thread exists in system at once
– Can execute independently or in cooperation
– Asynchronous execution

• Threads generally independent
• Must occasionally communicate or synchronize
• Complex and difficult to manage such interactions
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5.2 Mutual Exclusion

• Problem of two threads accessing data simultaneously
– Data can be put in inconsistent state

• Context switch can occur at anytime, such as before a thread 
finishes modifying value

– Such data must be accessed in mutually exclusive way
• Only one thread allowed access at one time
• Others must wait until resource is unlocked
• Serialized access
• Must be managed such that wait time not unreasonable
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5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

• Producer/Consumer relationship
– One thread creates data to store in shared object
– Second thread reads data from that object

• Large potential for data corruption if unsynchronized
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Figure 5.1 Buffer interface used in producer/consumer examples.

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 5.2 Producer class represents the producer thread in a 
producer/consumer relationship. (1 of 3)

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java
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Figure 5.2 Producer class represents the producer thread in a 
producer/consumer relationship. (2 of 3)

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java
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Figure 5.2 Producer class represents the producer thread in a 
producer/consumer relationship. (3 of 3)

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java
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Figure 5.3 Consumer class represents the consumer thread in a 
producer/consumer relationship. (1 of 3)

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java
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Figure 5.3 Consumer class represents the consumer thread in a 
producer/consumer relationship. (2 of 3)

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java
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Figure 5.3 Consumer class represents the consumer thread in a 
producer/consumer relationship. (3 of 3)

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java
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Figure 5.4 UnsynchronizedBuffer class maintains the shared integer that is 
accessed by a producer thread and a consumer thread via methods set and get. (1 of 
2)

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java
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Figure 5.4 UnsynchronizedBuffer class maintains the shared integer that is 
accessed by a producer thread and a consumer thread via methods set and get. (2 of 
2)

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java
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Figure 5.5 SharedBuffer class enables threads to modify a 
shared object without synchronization. (1 of 4)

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java
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Figure 5.5 SharedBuffer class enables threads to modify a 
shared object without synchronization. (2 of 4)

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java
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Figure 5.5 SharedBuffer class enables threads to modify a 
shared object without synchronization. (3 of 4)

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java
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Figure 5.5 SharedBuffer class enables threads to modify a 
shared object without synchronization. (4 of 4)

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java
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5.2.2 Critical Sections

• Most code is safe to run concurrently
• Sections where shared data is modified must be 

protected
– Known as critical sections
– Only one thread can be in its critical section at once

• Must be careful to avoid infinite loops and blocking inside a critical 
section



11

 2004 Deitel & Associates, Inc.  All rights reserved.

5.2.3 Mutual Exclusion Primitives

• Indicate when critical data is about to be accessed
– Mechanisms are normally provided by programming language or 

libraries
– Delimit beginning and end of critical section

• enterMutualExclusion

• exitMutualExclusion
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5.3 Implementing Mutual Exclusion Primitives

• Common properties of mutual exclusion primitives
– Each mutual exclusion machine language instruction is executed 

indivisibly
– Cannot make assumptions about relative speed of thread 

execution
– Thread not in its critical section cannot block other threads from 

entering their critical sections
– Thread may not be indefinitely postponed from entering its 

critical section
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5.4.1 Dekker’s Algorithm

• First version of Dekker’s algorithm
– Succeeds in enforcing mutual exclusion
– Uses variable to control which thread can execute
– Constantly tests whether critical section is available

• Busy waiting
• Wastes significant processor time

– Problem known as lockstep synchronization
• Each thread can execute only in strict alternation

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 5.6 Mutual exclusion implementation – version 1 (1 of 2).

5.4.1 Dekker’s Algorithm
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Figure 5.6 Mutual exclusion implementation – version 1 (2 of 2).

5.4.1 Dekker’s Algorithm
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5.4.1 Dekker’s Algorithm

• Second version
– Removes lockstep synchronization
– Violates mutual exclusion

• Thread could be preempted while updating flag variable
– Not an appropriate solution
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Figure 5.7 Mutual exclusion implementation – version 2 (1 of 3).

5.4.1 Dekker’s Algorithm
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Figure 5.7 Mutual exclusion implementation – version 2 (2 of 3).

5.4.1 Dekker’s Algorithm
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Figure 5.7 Mutual exclusion implementation – version 2 (3 of 3).

5.4.1 Dekker’s Algorithm
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5.4.1 Dekker’s Algorithm

• Third version
– Set critical section flag before entering critical section test

• Once again guarantees mutual exclusion
– Introduces possibility of deadlock

• Both threads could set flag simultaneously
• Neither would ever be able to break out of loop

– Not a solution to the mutual exclusion problem
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Figure 5.8 Mutual exclusion implementation – version 3 (1 of 2).

5.4.1 Dekker’s Algorithm
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Figure 5.8 Mutual exclusion implementation – version 3 (2 of 2).

5.4.1 Dekker’s Algorithm
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5.4.1 Dekker’s Algorithm

• Fourth version
– Sets flag to false for small periods of time to yield control
– Solves previous problems, introduces indefinite postponement

• Both threads could set flags to same values at same time
• Would require both threads to execute in tandem (unlikely but 

possible)
– Unacceptable in mission- or business-critical systems
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Figure 5.9 Mutual exclusion implementation – version 4 (1 of 4).

5.4.1 Dekker’s Algorithm
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Figure 5.9 Mutual exclusion implementation – version 4 (2 of 4).

5.4.1 Dekker’s Algorithm
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Figure 5.9 Mutual exclusion implementation – version 4 (3 of 4).

5.4.1 Dekker’s Algorithm
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Figure 5.9 Mutual exclusion implementation – version 4 (4 of 4).

5.4.1 Dekker’s Algorithm
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5.4.1 Dekker’s Algorithm

• Dekker’s Algorithm
– Proper solution
– Uses notion of favored threads to determine entry into critical 

sections
• Resolves conflict over which thread should execute first
• Each thread temporarily unsets critical section request flag
• Favored status alternates between threads

– Guarantees mutual exclusion
– Avoids previous problems of deadlock, indefinite postponement
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Figure 5.10 Dekker’s Algorithm for mutual exclusion. (1 of 4)

5.4.1 Dekker’s Algorithm
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Figure 5.10 Dekker’s Algorithm for mutual exclusion. (2 of 4)

5.4.1 Dekker’s Algorithm
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Figure 5.10 Dekker’s Algorithm for mutual exclusion. (3 of 4)

5.4.1 Dekker’s Algorithm
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Figure 5.10 Dekker’s Algorithm for mutual exclusion. (4 of 4)

5.4.1 Dekker’s Algorithm
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5.4.2 Peterson’s Algorithm

• Less complicated than Dekker’s Algorithm
– Still uses busy waiting, favored threads
– Requires fewer steps to perform mutual exclusion primitives
– Easier to demonstrate its correctness
– Does not exhibit indefinite postponement or deadlock
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Figure 5.11 Peterson’s Algorithm for mutual exclusion. (1 of 3)

5.4.2 Peterson’s Algorithm
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Figure 5.11 Peterson’s Algorithm for mutual exclusion. (2 of 3)

5.4.2 Peterson’s Algorithm
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Figure 5.11 Peterson’s Algorithm for mutual exclusion. (3 of 3)

5.4.2 Peterson’s Algorithm
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5.4.3 N-Thread Mutual Exclusion:
Lamport’s Bakery Algorithm

• Applicable to any number of threads
– Creates a queue of waiting threads by distributing numbered 

“tickets”
– Each thread executes when its ticket’s number is the lowest of all 

threads
– Unlike Dekker’s and Peterson’s Algorithms, the Bakery 

Algorithm works in multiprocessor systems and for n threads
– Relatively simple to understand due to its real-world analog
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Figure 5.12 Lamport’s Bakery Algorithm. (1 of 3)

5.4.3 N-Thread Mutual Exclusion:
Lamport’s Bakery Algorithm
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Figure 5.12 Lamport’s Bakery Algorithm. (2 of 3)

5.4.3 N-Thread Mutual Exclusion:
Lamport’s Bakery Algorithm
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Figure 5.12 Lamport’s Bakery Algorithm. (3 of 3)

5.4.3 N-Thread Mutual Exclusion:
Lamport’s Bakery Algorithm
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5.5 Hardware Solutions to the Mutual Exclusion Problem

• Implementing mutual exclusion in hardware
– Can improve performance
– Can decreased development time

• No need to implement complex software mutual exclusion 
solutions like Lamport’s Algorithm

 2004 Deitel & Associates, Inc.  All rights reserved.

5.5.1 Disabling Interrupts

• Disabling interrupts
– Works only on uniprocessor systems
– Prevents the currently executing thread from being preempted
– Could result in deadlock

• For example, thread waiting for I/O event in critical section
– Technique is used rarely
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5.5.2 Test-and-Set Instruction

• Use a machine-language instruction to ensure that 
mutual exclusion primitives are performed indivisibly
– Such instructions are called atomic
– Machine-language instructions do not ensure mutual exclusion 

alone—the software must properly use them
• For example, programmers must incorporate favored threads to 

avoid indefinite postponement
– Used to simplify software algorithms rather than replace them

• Test-and-set instruction
– testAndSet(a, b) copies the value of b to a, then sets b to 

true

– Example of an atomic read-modify-write (RMW) cycle
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Figure 5.13 testAndSet instruction for mutual exclusion. (1 of 3)

5.5.2 Test-and-Set Instruction
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Figure 5.13 testAndSet instruction for mutual exclusion. (2 of 3)

5.5.2 Test-and-Set Instruction
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Figure 5.13 testAndSet instruction for mutual exclusion. (3 of 3)

5.5.2 Test-and-Set Instruction
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5.5.3 Swap Instruction

• swap(a, b) exchanges the values of a and b
atomically

• Similar in functionality to test-and-set
– swap is more commonly implemented on multiple architectures
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Figure 5.14 swap instruction for mutual exclusion. (1 of 3)

5.5.3 Swap Instruction
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Figure 5.14 swap instruction for mutual exclusion. (2 of 3)

5.5.3 Swap Instruction
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Figure 5.14 swap instruction for mutual exclusion. (3 of 3)

5.5.3 Swap Instruction
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5.6 Semaphores

• Semaphores
– Software construct that can be used to enforce mutual exclusion
– Contains a protected variable

• Can be accessed only via wait and signal commands
• Also called P and V operations, respectively
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5.6.1 Mutual Exclusion with Semaphores

• Binary semaphore: allow only one thread in its 
critical section at once
– Wait operation

• If no threads are waiting, allow thread into its critical section
• Decrement protected variable (to 0 in this case)
• Otherwise place in waiting queue

– Signal operation
• Indicate that thread is outside its critical section
• Increment protected variable (from 0 to 1)
• A waiting thread (if there is one) may now enter
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Figure 5.15 Mutual exclusion with semaphores.

5.6.1 Mutual Exclusion with Semaphores
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5.6.2 Thread Synchronization with Semaphores

• Semaphores can be used to notify other threads that 
events have occurred
– Producer-consumer relationship

• Producer enters its critical section to produce value
• Consumer is blocked until producer finishes
• Consumer enters its critical section to read value
• Producer cannot update value until it is consumed

– Semaphores offer a clear, easy-to-implement solution to this 
problem
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Figure 5.16 Producer/consumer relationship implemented with semaphores. (1 of 2)

5.6.2 Thread Synchronization with Semaphores
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Figure 5.16 Producer/consumer relationship implemented with semaphores. (2 of 2)

5.6.2 Thread Synchronization with Semaphores
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5.6.3 Counting Semaphores

• Counting semaphores
– Initialized with values greater than one
– Can be used to control access to a pool of identical resources

• Decrement the semaphore’s counter when taking resource from 
pool

• Increment the semaphore’s counter when returning it to pool
• If no resources are available, thread is blocked until a resource 

becomes available
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5.6.4 Implementing Semaphores

• Semaphores can be implemented at application or 
kernel level
– Application level: typically implemented by busy waiting

• Inefficient
– Kernel implementations can avoid busy waiting

• Block waiting threads until they are ready
– Kernel implementations can disable interrupts

• Guarantee exclusive semaphore access
• Must be careful to avoid poor performance and deadlock
• Implementations for multiprocessor systems must use a more 

sophisticated approach


