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Objectives

 After reading this chapter, you should understand:

— the challenges of synchronizing concurrent processes and
threads.

— critical sections and the need for mutual exclusion.
— how to implement mutual exclusion primitives in software.
— hardware mutual exclusion primitives.

— semaphore usage and implementation.
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5.1 Introduction

» Concurrent execution
— More than one thread exists in system at once
— Can execute independently or in cooperation

— Asynchronous execution
» Threads generally independent
* Must occasionally communicate or synchronize

* Complex and difficult to manage such interactions
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5.2 Mutual Exclusion

* Problem of two threads accessing data simultaneously

— Data can be put in inconsistent state

* Context switch can occur at anytime, such as before a thread
finishes modifying value

— Such data must be accessed in mutually exclusive way
* Only one thread allowed access at one time
* Others must wait until resource is unlocked
* Serialized access
* Must be managed such that wait time not unreasonable
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5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

* Producer/Consumer relationship
— One thread creates data to store in shared object

— Second thread reads data from that object
» Large potential for data corruption if unsynchronized
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5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.1 Buffer interface used in producer/consumer examples.

public interface Buffer
]
6 public void set( int value );
i public int get();
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5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.2 Producer class represents the producer thread in a
producer/consumer relationship. (1 of 3)

public class Producer extends Thread

{

private Buffer sharedLocation;

1 public Producer( Buffer shared )
11 {

12 super( "Producer" );

13 sharedlLocation = shared;
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5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.2 Producer class represents the producer thread in a
producer/consumer relationship. (2 of 3)

public void run()

19 88 {
20 for ( int count = 1; count <= 4; count++ )
%
try
{
Thread.sleep( ( int ) { Math.random() * 3001 ) };
sharedLocation.set( count ); to ti f
]_ r
catch ( InterruptedException exception )
{
exception.printStackTrace();
} ! f

}
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5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.2 Producer class represents the producer thread in a
producer/consumer relationship. (3 of 3)

System.err.printin( getName() + " done producing.”

erminating " + getName() + "." );
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5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.3 Consumer class represents the consumer thread in a
producer/consumer relationship. (1 of 3)

public class Consumer extends Thread
{

private Buffer sharedlLocation;

10 public Consumer( Buffer shared )
B £
super ( "Consumer™ );
sharedLocation = shared;
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5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.3 Consumer class represents the consumer thread in a
producer/consumer relationship. (2 of 3)

publiec void run()

{

int sum = 0;

for ( int count = 1; count <= 4; ++count )

{

Thread.sleep( ( int ) ( Math.random() * 3001 ) );
sum += sharedlLocation.get();
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5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.3 Consumer class represents the consumer thread in a
producer/consumer relationship. (3 of 3)

catch ( InterruptedException exception )
{

34 exception.printStackTrace();

& 1

16 ].

System.err.println( getName() + " read values totaling:
+ sum + ".\nTerminating " + getName(}) + "." );
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5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.4 UnsynchronizedBuffer class maintains the shared integer that is
accessed by a producer thread and a consumer thread via methods set and get. (1 of
2)

1

]

| public class UnsynchronizedBuffer implements Buffer
3

private int buffer = -1;

public void set{ int value )

{

] System.err.printin( Thread.currentThread().getName() +
" writes " + value );

4 buffer = value;

}
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5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.4 UnsynchronizedBuffer class maintains the shared integer that is
accessed by a producer thread and a consumer thread via methods set and get. (2 of
2)

17 etur u
18 public int get()

19 {
20 System.err.printin( Thread.currentThread().getName() +
] " reads " + buffer );

? return buffer;

24 } { method

. }
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5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.5 SharedBuffer class enables threads to modify a
shared object without synchronization. (1 of 4)

4  public class SharedBufferTest
50
public static void main{ String [] args )
{
Buffer sharedLocation = new UnsynchronizedBuffer();
11 I or
12 Producer producer = new Producer( sharedlLocation )};

Consumer consumer new Consumer( sharedLocation );

producer.start();

consumer.start();

208
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5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.5 SsharedBuffer class enables threads to modify a
shared object without synchronization. (2 of 4)

Sample Oufpul 1.
eads 1

Lonsumer

Producer writes 1
Consumer s 1
Consumer reads 1
Consumel i 1
Consume | 1L totaling

‘roducer writes 2
;""'\|I|' er writes >
‘roducer writes 4
Producer done producing.
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5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.5 SharedBuffer class enables threads to modify a
shared object without synchronization. (3 of 4)

Sample Ouiput 2.

vrites
eads

Nrite

me eads

Pr C rite

Producer done producing.

Terminating Producer.

1ds 4
nsumer reads 4

1 11 ue ing
erminating Consumer.
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5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.5 SsharedBuffer class enables threads to modify a
shared object without synchronization. (4 of 4)

Sample Oulpul Z.

erminating Consume
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5.2.2 Critical Sections

* Most code is safe to run concurrently

» Sections where shared data is modified must be
protected
— Known as critical sections
— Only one thread can be in its critical section at once

* Must be careful to avoid infinite loops and blocking inside a critical
section
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5.2.3 Mutual Exclusion Primitives

» Indicate when critical data is about to be accessed

— Mechanisms are normally provided by programming language or
libraries

— Delimit beginning and end of critical section
» enterMutualExclusion
» exitMutualExclusion
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5.3 Implementing Mutual Exclusion Primitives

« Common properties of mutual exclusion primitives
— Each mutual exclusion machine language instruction is executed
indivisibly
— Cannot make assumptions about relative speed of thread
execution

— Thread not in its critical section cannot block other threads from
entering their critical sections

— Thread may not be indefinitely postponed from entering its
critical section
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5.4.1 Dekker’s Algorithm

* First version of Dekker’s algorithm

— Succeeds in enforcing mutual exclusion

— Uses variable to control which thread can execute

— Constantly tests whether critical section is available
* Busy waiting
» Wastes significant processor time

— Problem known as lockstep synchronization
» Each thread can execute only in strict alternation
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5.4.1 Dekker’s Algorithm

Figure 5.6 Mutual exclusion implementation — version 1 (1 of 2).

System:
int threadNumber =
startThreads();
Thread T:

void main() {

while ( !done )

I
1

while ( threadNumber == 2 );

threadNumber =
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5.4.1 Dekker’s Algorithm

Figure 5.6 Mutual exclusion implementation — version 1 (2 of 2).

}

Thread Ta:

void main() {
while ( !done )

{

while ( threadNumber == 1 );

threadNumber = 1;
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5.4.1 Dekker’s Algorithm

» Second version
— Removes lockstep synchronization
— Violates mutual exclusion
» Thread could be preempted while updating flag variable
— Not an appropriate solution
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5.4.1 Dekker’s Algorithm

Figure 5.7 Mutual exclusion implementation — version 2 (1 of 3).

1 System:

boolean tlInside = false;
boolean t2Inside = false;

startThreads();

o] Thread T I
void main() {
while ( !done )
{
14 while ( t2Inside );

tllnside = true;

tllnside = false;
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5.4.1 Dekker’s Algorithm

Figure 5.7 Mutual exclusion implementation — version 2 (2 of 3).

28  Thread Ty

G

void mainQ) {

32 while ( !done )

33 {

34 while ( tlInside );

t2Inside = true;
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5.4.1 Dekker’s Algorithm

Figure 5.7 Mutual exclusion implementation — version 2 (3 of 3).

t2Inside = false;
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5.4.1 Dekker’s Algorithm

* Third version
— Set critical section flag before entering critical section test
* Once again guarantees mutual exclusion
— Introduces possibility of deadlock
* Both threads could set flag simultaneously
» Neither would ever be able to break out of loop

— Not a solution to the mutual exclusion problem
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5.4.1 Dekker’s Algorithm

Figure 5.8 Mutual exclusion implementation — version 3 (1 of 2).

Sysfenm:
ean tlWantsToEnter = false;
lean t2WantsToEnter = false;

startThreads();

Thread T

void main()

{

while ( !done )
{

tlWantsToEnter = true;

while ( t2WantsToEnter );

tilWantsToEnter = false;
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5.4.1 Dekker’s Algorithm

Figure 5.8 Mutual exclusion implementation — version 3 (2 of 2).

}

Thread Ta:

id main()
while ( !done )
{

t2WantsToEnter = true;

while ( tlWantsToEnter );

t2WantsToEnter = false;
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5.4.1 Dekker’s Algorithm

* Fourth version
— Sets flag to false for small periods of time to yield control
— Solves previous problems, introduces indefinite postponement
* Both threads could set flags to same values at same time

* Would require both threads to execute in tandem (unlikely but
possible)

— Unacceptable in mission- or business-critical systems
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5.4.1 Dekker’s Algorithm

Figure 5.9 Mutual exclusion implementation — version 4 (1 of 4).

Svsrem:

boolean tlWantsToEnter = false;

boolean t2WantsToEnter False;

startThreads();
8 Thread Ty:

10 void main()
LT
while ( !done )
{

1
1
14 tlWantsToEnter = true;
]
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5.4.1 Dekker’s Algorithm

Figure 5.9 Mutual exclusion implementation — version 4 (2 of 4).

16 while ( t2WantsToEnter )

1 {
18 tlWantsToEnter = false;
19
21
22 tlWantsToEnter = true;
26
27 tlWantsToEnter = false;
R
3}

J MOT
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5.4.1 Dekker’s Algorithm

Figure 5.9 Mutual exclusion implementation — version 4 (3 of 4).

1
Thread Ta:

void main(Q)

39 while ( !done )

10 {

41 t2WantsToEnter = true;

13 while ( tlWantsToEnter )
44 {

4- t2WantsToEnter = false;
A7

19 t2wWantsToEnter = true;

50 }
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5.4.1 Dekker’s Algorithm

Figure 5.9 Mutual exclusion implementation — version 4 (4 of 4).

54 t2WantsToEnter = false;
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5.4.1 Dekker’s Algorithm

» Dekker’s Algorithm

— Proper solution

— Uses notion of favored threads to determine entry into critical
sections

» Resolves conflict over which thread should execute first
* Each thread temporarily unsets critical section request flag
» Favored status alternates between threads

— Guarantees mutual exclusion

— Avoids previous problems of deadlock, indefinite postponement

© 2004 Deitel & Associates, Inc. All rights reserved. - _
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5.4.1 Dekker’s Algorithm

Figure 5.10 Dekker’s Algorithm for mutual exclusion. (1 of 4)

1 Svstem:
3
int favoredThread = 1;
4 boolean tlWantsToEnter = false;
5 boolean t2WantsToEnter = false;

startThreads(); 17 1 13 1d
g Thread Ty:

void main()
12554
while ( !done )
14 {
tlWantsToEnter = true;
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5.4.1 Dekker’s Algorithm

Figure 5.10 Dekker’s Algorithm for mutual exclusion. (2 of 4)

17 while ( t2WantsToEnter )

18 {

19 if ( favoredThread == 2 )

20 {

21 tlWantsToEnter = false;

2 2 while ( favoredThread == 2 ); vait
23 tlWantsToEnter = true;

] } i

3 favoredThread = 2;
31 tlWantsToEnter = false;
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5.4.1 Dekker’s Algorithm

Figure 5.10 Dekker’s Algorithm for mutual exclusion. (3 of 4)

Thread T>:

void main()

{
while ( !done )
{

t2WantsToEnter = true;

while ( tlWantsToEnter )

{
if ( favoredThread == 1 )
{
t2WantsToEnter = false;
while ( favoredThread == 1 );
t2WantsToEnter = true;
} RGUTEAY
}
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5.4.1 Dekker’s Algorithm

Figure 5.10 Dekker’s Algorithm for mutual exclusion. (4 of 4)

favoredThread = 1;
t2WantsToEnter = false;

© 2004 Deitel & Associates, Inc. All rights reserved. - -
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5.4.2 Peterson’s Algorithm

* Less complicated than Dekker’s Algorithm
— Still uses busy waiting, favored threads
— Requires fewer steps to perform mutual exclusion primitives
— Easier to demonstrate its correctness
— Does not exhibit indefinite postponement or deadlock

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.4.2 Peterson’s Algorithm

Figure 5.11 Peterson’s Algorithm for mutual exclusion. (1 of 3)

] Svsrem:

int favoredThread = 1;
boolean tilWantsToEnter
bhoolean t2WantsToEnter

alse;

- =h

startThreads();
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5.4.2 Peterson’s Algorithm
Figure 5.11 Peterson’s Algorithm for mutual exclusion. (2 of 3)

9 Thread Ty:

11 void main(Q)

{
while ( !done )
14 {
15 tlWantsToEnter = true;
favoredThread = 2;
while ( t2WantsToEnter && favoredThread == 2 );
20
21
22 tlWantsToEnter = false;
}
¥
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5.4.2 Peterson’s Algorithm

Figure 5.11 Peterson’s Algorithm for mutual exclusion. (3 of 3)

Thread Tr:

void main()

{
34 while ( !done )
15 {
1 t2WantsToEnter = true;
7 favoredThread = 1;
39 while ( tlWantsToEnter && favoredThread == 1 };
41
12
43 tZWantsToEnter = false;
44
46
47 I
Tt T
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5.4.3 N-Thread Mutual Exclusion:
Lamport’s Bakery Algorithm

* Applicable to any number of threads
— Creates a queue of waiting threads by distributing numbered
“tickets”
— Each thread executes when its ticket’s number is the lowest of all
threads

— Unlike Dekker’s and Peterson’s Algorithms, the Bakery
Algorithm works in multiprocessor systems and for » threads

— Relatively simple to understand due to its real-world analog

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.4.3 N-Thread Mutual Exclusion:
Lamport’s Bakery Algorithm

Figure 5.12 Lamport’s Bakery Algorithm. (1 of 3)

Svstem:
boolean choosing[n];

int ticket[n]:

startThreads();

© 2004 Deitel & Associates, Inc. All rights reserved. - _
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5.4.3 N-Thread Mutual Exclusion:
Lamport’s Bakery Algorithm

Figure 5.12 Lamport’s Bakery Algorithm. (2 of 3)

Thread T ,:
void main()
{

¥ = threadNumber();

while ( !done )

18 {

choosing[x] = true;
ticket[x] = maxValue( ticket ) +
choosing[x] = false;
for Cint 1 =03 i < n; i++)
{

if Ci=x)

{

continue;
}
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5.4.3 N-Thread Mutual Exclusion:
Lamport’s Bakery Algorithm

Figure 5.12 Lamport’s Bakery Algorithm. (3 of 3)

while ( choosing[i] != false );
while ¢ ticket[i] != &é.t%cket[i] < ticket[x] );
} if i.ticket[}] == t1£kat[x] & 1 < x )
while ( Liéket[i] 1= 0 );
:
? ticket[x] = 0;
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5.5 Hardware Solutions to the Mutual Exclusion Problem

* Implementing mutual exclusion in hardware

Can improve performance
Can decreased development time

» No need to implement complex software mutual exclusion
solutions like Lamport’s Algorithm

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.5.1 Disabling Interrupts

* Disabling interrupts

Works only on uniprocessor systems
Prevents the currently executing thread from being preempted
Could result in deadlock

» For example, thread waiting for I/O event in critical section

Technique is used rarely

© 2004 Deitel & Associates, Inc. All rights reserved. - _
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5.5.2 Test-and-Set Instruction

* Use a machine-language instruction to ensure that
mutual exclusion primitives are performed indivisibly
— Such instructions are called atomic

— Machine-language instructions do not ensure mutual exclusion
alone—the software must properly use them

* For example, programmers must incorporate favored threads to
avoid indefinite postponement

— Used to simplify software algorithms rather than replace them
 Test-and-set instruction

- testAndset(a, b) copies the value of b to a, then sets b to
true

— Example of an atomic read-modify-write (RMW) cycle

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.5.2 Test-and-Set Instruction

Figure 5.13 testAndSet instruction for mutual exclusion. (1 of 3)

System:
boolean occupied = false;
startThreads();

Thread T:

void main()
{
boolean plMustWait = true;

while ( !done )
{
while ( plMustWait )

{
testAndSet( plMustWait, occupied );

}

© 2004 Deitel & Associates, Inc. All rights reserved. - _
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5.5.2 Test-and-Set Instruction

Figure 5.13 testAndSet instruction for mutual exclusion. (2 of 3)

22 plMustWait = true;
occupied = false;

Thread .Ir_>
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5.5.2 Test-and-Set Instruction

Figure 5.13 testAndSet instruction for mutual exclusion. (3 of 3)

void main()
{
boolean pZMustWait = true;
while ( !done )
i
while ( p2MustWait )
{
4 testAndSet( p2MustWait, occupied );
4 }
p2MustWait = true;
occupied = false;

}

© 2004 Deitel & Associates, Inc. All rights reserved. - -
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5.5.3 Swap Instruction

« swap(a, b) exchanges the values of aand b
atomically

* Similar in functionality to test-and-set

- swap is more commonly implemented on multiple architectures

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.5.3 Swap Instruction

Figure 5.14 swap instruction for mutual exclusion. (1 of 3)

Svstem:

boolean occupied = false;
startThreads();

Thread T

void main()

{
11 boolean plMustWait = true;

© 2004 Deitel & Associates, Inc. All rights reserved. - _

29



5.5.3 Swap Instruction

Figure 5.14 swap instruction for mutual exclusion. (2 of 3)

13 while ( !done )

14 {

15 do

16 {

17 swap( plMustWait, occupied );
18 } while ( plMustWait );

19

plMustWait = true;
occupied = false;
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5.5.3 Swap Instruction

Figure 5.14 swap instruction for mutual exclusion. (3 of 3)

Thread Ts:

void main()

{
boolean p2MustWait = true;
while ( !done )
{
{
swap( p2MustWait, occupied )};
} while ( p2MustWait );
46 p2MustWait = true;
occupied = false;
}
}

© 2004 Deitel & Associates, Inc. All rights reserved. - -
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5.6 Semaphores

» Semaphores
— Software construct that can be used to enforce mutual exclusion
— Contains a protected variable
» Can be accessed only via wait and signal commands
* Also called P and V operations, respectively

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.6.1 Mutual Exclusion with Semaphores

 Binary semaphore: allow only one thread in its
critical section at once

— Wait operation
* If no threads are waiting, allow thread into its critical section
» Decrement protected variable (to 0 in this case)
» Otherwise place in waiting queue

— Signal operation
* Indicate that thread is outside its critical section
* Increment protected variable (from 0 to 1)
» A waiting thread (if there is one) may now enter
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5.6.1 Mutual Exclusion with Semaphores

Figure 5.15 Mutual exclusion with semaphores.

Semaphore occupied = new Semaphore(l);

startThreads() ;
id main()
hile ( !done )

P( occupied );

V( occupied };
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5.6.2 Thread Synchronization with Semaphores

» Semaphores can be used to notify other threads that
events have occurred
— Producer-consumer relationship
* Producer enters its critical section to produce value
» Consumer is blocked until producer finishes
» Consumer enters its critical section to read value
* Producer cannot update value until it is consumed

— Semaphores offer a clear, easy-to-implement solution to this
problem

© 2004 Deitel & Associates, Inc. All rights reserved. - _
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5.6.2 Thread Synchronization with Semaphores

Figure 5.16 Producer/consumer relationship implemented with semaphores. (1 of 2)
Svsreme:

Semaphore valueProduced = new Semaphore(0);
Semaphore valueConsumed new Semaphore(l);
int sharedValue; |

startThreads();
Producer Thread:

void main()

{

int nextValueProduced;

while ( !done )

{

nextValueProduced = generateTheValue();
P( valueConsumed J;

sharedValue = nextValueProduced;

V{ valueProduced J;
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5.6.2 Thread Synchronization with Semaphores

Figure 5.16 Producer/consumer relationship implemented with semaphores. (2 of 2)

6 Consumer Thread:

28 wvoid mainQ)

29 i
30 int nextValue;

31

2 while ( !done )

] {

34 P( valueProduced ); I v

5 nextValueConsumed = sharedValue;

. V( valueConsumed ); gnal that I

37 processTheValue( nextValueConsumed );
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5.6.3 Counting Semaphores

* Counting semaphores
— Initialized with values greater than one

— Can be used to control access to a pool of identical resources

* Decrement the semaphore’s counter when taking resource from
pool

* Increment the semaphore’s counter when returning it to pool

« If no resources are available, thread is blocked until a resource
becomes available
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5.6.4 Implementing Semaphores

» Semaphores can be implemented at application or
kernel level

— Application level: typically implemented by busy waiting
* Inefficient

— Kernel implementations can avoid busy waiting
* Block waiting threads until they are ready

— Kernel implementations can disable interrupts
* Guarantee exclusive semaphore access
* Must be careful to avoid poor performance and deadlock

* Implementations for multiprocessor systems must use a more
sophisticated approach
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