Chapter 5 — Asynchronous Concurrent

Execution
Outline
5.1 Introduction
5.2 Mutual Exclusion

5.21 Java Multithreading Case Study
5.2.2 Critical Sections

5.2.3 Mutual Exclusion Primitives
5.3 Implementing Mutual Exclusion Primitives
5.4 Software Solutions to the Mutual Exclusion Problem

5.4.1 Dekker’s Algorithm

5.4.2 Peterson’s Algorithm

5.4.3 N-Thread Mutual Exclusion: Lamport’s Bakery Algorithm
5.5 Hardware Solutions to the Mutual Exclusion Problem
5.5.1 Disabling Interrupts

5.5.2 Test-and-Set Instruction

5.5.3 Swap Instruction

© 2004 Deitel & Associates, Inc. All rights reserved. - -

Chapter 5 — Asynchronous Concurrent

Execution
Outline (continued)
5.6 Semaphores
5.6.1 Mutual Exclusion with Semaphores

5.6.2 Thread Synchronization with Semaphores
5.6.3 Counting Semaphores
5.6.4 Implementing Semaphores

© 2004 Deitel & Associates, Inc. All rights reserved. - -




Objectives

 After reading this chapter, you should understand:

— the challenges of synchronizing concurrent processes and
threads.

— critical sections and the need for mutual exclusion.
— how to implement mutual exclusion primitives in software.
— hardware mutual exclusion primitives.

— semaphore usage and implementation.

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.1 Introduction

» Concurrent execution
— More than one thread exists in system at once
— Can execute independently or in cooperation

— Asynchronous execution
» Threads generally independent
* Must occasionally communicate or synchronize

* Complex and difficult to manage such interactions

© 2004 Deitel & Associates, Inc. All rights reserved. - _




5.2 Mutual Exclusion

* Problem of two threads accessing data simultaneously

— Data can be put in inconsistent state

* Context switch can occur at anytime, such as before a thread
finishes modifying value

— Such data must be accessed in mutually exclusive way
* Only one thread allowed access at one time
* Others must wait until resource is unlocked
* Serialized access
* Must be managed such that wait time not unreasonable

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

* Producer/Consumer relationship
— One thread creates data to store in shared object

— Second thread reads data from that object
» Large potential for data corruption if unsynchronized

© 2004 Deitel & Associates, Inc. All rights reserved. - _




5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.1 Buffer interface used in producer/consumer examples.

public interface Buffer
]
6 public void set( int value );
i public int get();

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.2 Producer class represents the producer thread in a
producer/consumer relationship. (1 of 3)

public class Producer extends Thread

{

private Buffer sharedLocation;

1 public Producer( Buffer shared )
11 {

12 super( "Producer" );

13 sharedlLocation = shared;

© 2004 Deitel & Associates, Inc. All rights reserved. - _




5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.2 Producer class represents the producer thread in a
producer/consumer relationship. (2 of 3)

public void run()

19 88 {
20 for ( int count = 1; count <= 4; count++ )
%
try
{
Thread.sleep( ( int ) { Math.random() * 3001 ) };
sharedLocation.set( count ); to ti f
]_ r
catch ( InterruptedException exception )
{
exception.printStackTrace();
} ! f

}

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.2 Producer class represents the producer thread in a
producer/consumer relationship. (3 of 3)

System.err.printin( getName() + " done producing.”

erminating " + getName() + "." );

© 2004 Deitel & Associates, Inc. All rights reserved. - _

+




5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.3 Consumer class represents the consumer thread in a
producer/consumer relationship. (1 of 3)

public class Consumer extends Thread
{

private Buffer sharedlLocation;

10 public Consumer( Buffer shared )
B £
super ( "Consumer™ );
sharedLocation = shared;

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.3 Consumer class represents the consumer thread in a
producer/consumer relationship. (2 of 3)

publiec void run()

{

int sum = 0;

for ( int count = 1; count <= 4; ++count )

{

Thread.sleep( ( int ) ( Math.random() * 3001 ) );
sum += sharedlLocation.get();

© 2004 Deitel & Associates, Inc. All rights reserved. - _




5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.3 Consumer class represents the consumer thread in a
producer/consumer relationship. (3 of 3)

catch ( InterruptedException exception )
{

34 exception.printStackTrace();

& 1

16 ].

System.err.println( getName() + " read values totaling:
+ sum + ".\nTerminating " + getName(}) + "." );

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.4 UnsynchronizedBuffer class maintains the shared integer that is
accessed by a producer thread and a consumer thread via methods set and get. (1 of
2)

1

]

| public class UnsynchronizedBuffer implements Buffer
3

private int buffer = -1;

public void set{ int value )

{

] System.err.printin( Thread.currentThread().getName() +
" writes " + value );

4 buffer = value;

}

© 2004 Deitel & Associates, Inc. All rights reserved. - _




5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.4 UnsynchronizedBuffer class maintains the shared integer that is
accessed by a producer thread and a consumer thread via methods set and get. (2 of
2)

17 etur u
18 public int get()

19 {
20 System.err.printin( Thread.currentThread().getName() +
] " reads " + buffer );

? return buffer;

24 } { method

. }

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.5 SharedBuffer class enables threads to modify a
shared object without synchronization. (1 of 4)

4  public class SharedBufferTest
50
public static void main{ String [] args )
{
Buffer sharedLocation = new UnsynchronizedBuffer();
11 I or
12 Producer producer = new Producer( sharedlLocation )};

Consumer consumer new Consumer( sharedLocation );

producer.start();

consumer.start();

208

© 2004 Deitel & Associates, Inc. All rights reserved. - _




5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.5 SsharedBuffer class enables threads to modify a
shared object without synchronization. (2 of 4)

Sample Oufpul 1.
eads 1

Lonsumer

Producer writes 1
Consumer s 1
Consumer reads 1
Consumel i 1
Consume | 1L totaling

‘roducer writes 2
;""'\|I|' er writes >
‘roducer writes 4
Producer done producing.

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.5 SharedBuffer class enables threads to modify a
shared object without synchronization. (3 of 4)

Sample Ouiput 2.

vrites
eads

Nrite

me eads

Pr C rite

Producer done producing.

Terminating Producer.

1ds 4
nsumer reads 4

1 11 ue ing
erminating Consumer.

© 2004 Deitel & Associates, Inc. All rights reserved. - _




5.2.1 Java Multithreading Case Study, Part II:
A Producer/Consumer Relationship in Java

Figure 5.5 SsharedBuffer class enables threads to modify a
shared object without synchronization. (4 of 4)

Sample Oulpul Z.

erminating Consume

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.2.2 Critical Sections

* Most code is safe to run concurrently

» Sections where shared data is modified must be
protected
— Known as critical sections
— Only one thread can be in its critical section at once

* Must be careful to avoid infinite loops and blocking inside a critical
section

© 2004 Deitel & Associates, Inc. All rights reserved. - _




5.2.3 Mutual Exclusion Primitives

» Indicate when critical data is about to be accessed

— Mechanisms are normally provided by programming language or
libraries

— Delimit beginning and end of critical section
» enterMutualExclusion
» exitMutualExclusion

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.3 Implementing Mutual Exclusion Primitives

« Common properties of mutual exclusion primitives
— Each mutual exclusion machine language instruction is executed
indivisibly
— Cannot make assumptions about relative speed of thread
execution

— Thread not in its critical section cannot block other threads from
entering their critical sections

— Thread may not be indefinitely postponed from entering its
critical section

© 2004 Deitel & Associates, Inc. All rights reserved. - _

11



5.4.1 Dekker’s Algorithm

* First version of Dekker’s algorithm

— Succeeds in enforcing mutual exclusion

— Uses variable to control which thread can execute

— Constantly tests whether critical section is available
* Busy waiting
» Wastes significant processor time

— Problem known as lockstep synchronization
» Each thread can execute only in strict alternation

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.4.1 Dekker’s Algorithm

Figure 5.6 Mutual exclusion implementation — version 1 (1 of 2).

System:
int threadNumber =
startThreads();
Thread T:

void main() {

while ( !done )

I
1

while ( threadNumber == 2 );

threadNumber =

© 2004 Deitel & Associates, Inc. All rights reserved. - _

12



5.4.1 Dekker’s Algorithm

Figure 5.6 Mutual exclusion implementation — version 1 (2 of 2).

}

Thread Ta:

void main() {
while ( !done )

{

while ( threadNumber == 1 );

threadNumber = 1;

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.4.1 Dekker’s Algorithm

» Second version
— Removes lockstep synchronization
— Violates mutual exclusion
» Thread could be preempted while updating flag variable
— Not an appropriate solution

© 2004 Deitel & Associates, Inc. All rights reserved. - _

13



5.4.1 Dekker’s Algorithm

Figure 5.7 Mutual exclusion implementation — version 2 (1 of 3).

1 System:

boolean tlInside = false;
boolean t2Inside = false;

startThreads();

o] Thread T I
void main() {
while ( !done )
{
14 while ( t2Inside );

tllnside = true;

tllnside = false;

© 2004 Deitel & Associates, Inc. All rights reserved. - -

5.4.1 Dekker’s Algorithm

Figure 5.7 Mutual exclusion implementation — version 2 (2 of 3).

28  Thread Ty

G

void mainQ) {

32 while ( !done )

33 {

34 while ( tlInside );

t2Inside = true;

© 2004 Deitel & Associates, Inc. All rights reserved. - -

14



5.4.1 Dekker’s Algorithm

Figure 5.7 Mutual exclusion implementation — version 2 (3 of 3).

t2Inside = false;

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.4.1 Dekker’s Algorithm

* Third version
— Set critical section flag before entering critical section test
* Once again guarantees mutual exclusion
— Introduces possibility of deadlock
* Both threads could set flag simultaneously
» Neither would ever be able to break out of loop

— Not a solution to the mutual exclusion problem

© 2004 Deitel & Associates, Inc. All rights reserved. - _

15



5.4.1 Dekker’s Algorithm

Figure 5.8 Mutual exclusion implementation — version 3 (1 of 2).

Sysfenm:
ean tlWantsToEnter = false;
lean t2WantsToEnter = false;

startThreads();

Thread T

void main()

{

while ( !done )
{

tlWantsToEnter = true;

while ( t2WantsToEnter );

tilWantsToEnter = false;

© 2004 Deitel & Associates, Inc. All rights reserved. - -

5.4.1 Dekker’s Algorithm

Figure 5.8 Mutual exclusion implementation — version 3 (2 of 2).

}

Thread Ta:

id main()
while ( !done )
{

t2WantsToEnter = true;

while ( tlWantsToEnter );

t2WantsToEnter = false;

© 2004 Deitel & Associates, Inc. All rights reserved. - -

16



5.4.1 Dekker’s Algorithm

* Fourth version
— Sets flag to false for small periods of time to yield control
— Solves previous problems, introduces indefinite postponement
* Both threads could set flags to same values at same time

* Would require both threads to execute in tandem (unlikely but
possible)

— Unacceptable in mission- or business-critical systems

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.4.1 Dekker’s Algorithm

Figure 5.9 Mutual exclusion implementation — version 4 (1 of 4).

Svsrem:

boolean tlWantsToEnter = false;

boolean t2WantsToEnter False;

startThreads();
8 Thread Ty:

10 void main()
LT
while ( !done )
{

1
1
14 tlWantsToEnter = true;
]

© 2004 Deitel & Associates, Inc. All rights reserved. - _

17



5.4.1 Dekker’s Algorithm

Figure 5.9 Mutual exclusion implementation — version 4 (2 of 4).

16 while ( t2WantsToEnter )

1 {
18 tlWantsToEnter = false;
19
21
22 tlWantsToEnter = true;
26
27 tlWantsToEnter = false;
R
3}

J MOT

© 2004 Deitel & Associates, Inc. All rights reserved. - -

5.4.1 Dekker’s Algorithm

Figure 5.9 Mutual exclusion implementation — version 4 (3 of 4).

1
Thread Ta:

void main(Q)

39 while ( !done )

10 {

41 t2WantsToEnter = true;

13 while ( tlWantsToEnter )
44 {

4- t2WantsToEnter = false;
A7

19 t2wWantsToEnter = true;

50 }

© 2004 Deitel & Associates, Inc. All rights reserved. - -

18



5.4.1 Dekker’s Algorithm

Figure 5.9 Mutual exclusion implementation — version 4 (4 of 4).

54 t2WantsToEnter = false;

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.4.1 Dekker’s Algorithm

» Dekker’s Algorithm

— Proper solution

— Uses notion of favored threads to determine entry into critical
sections

» Resolves conflict over which thread should execute first
* Each thread temporarily unsets critical section request flag
» Favored status alternates between threads

— Guarantees mutual exclusion

— Avoids previous problems of deadlock, indefinite postponement

© 2004 Deitel & Associates, Inc. All rights reserved. - _

19



5.4.1 Dekker’s Algorithm

Figure 5.10 Dekker’s Algorithm for mutual exclusion. (1 of 4)

1 Svstem:
3
int favoredThread = 1;
4 boolean tlWantsToEnter = false;
5 boolean t2WantsToEnter = false;

startThreads(); 17 1 13 1d
g Thread Ty:

void main()
12554
while ( !done )
14 {
tlWantsToEnter = true;

© 2004 Deitel & Associates, Inc. All rights reserved. - -

5.4.1 Dekker’s Algorithm

Figure 5.10 Dekker’s Algorithm for mutual exclusion. (2 of 4)

17 while ( t2WantsToEnter )

18 {

19 if ( favoredThread == 2 )

20 {

21 tlWantsToEnter = false;

2 2 while ( favoredThread == 2 ); vait
23 tlWantsToEnter = true;

] } i

3 favoredThread = 2;
31 tlWantsToEnter = false;

© 2004 Deitel & Associates, Inc. All rights reserved. - -

20



5.4.1 Dekker’s Algorithm

Figure 5.10 Dekker’s Algorithm for mutual exclusion. (3 of 4)

Thread T>:

void main()

{
while ( !done )
{

t2WantsToEnter = true;

while ( tlWantsToEnter )

{
if ( favoredThread == 1 )
{
t2WantsToEnter = false;
while ( favoredThread == 1 );
t2WantsToEnter = true;
} RGUTEAY
}

© 2004 Deitel & Associates, Inc. All rights reserved. - -

5.4.1 Dekker’s Algorithm

Figure 5.10 Dekker’s Algorithm for mutual exclusion. (4 of 4)

favoredThread = 1;
t2WantsToEnter = false;

© 2004 Deitel & Associates, Inc. All rights reserved. - -

21



5.4.2 Peterson’s Algorithm

* Less complicated than Dekker’s Algorithm
— Still uses busy waiting, favored threads
— Requires fewer steps to perform mutual exclusion primitives
— Easier to demonstrate its correctness
— Does not exhibit indefinite postponement or deadlock

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.4.2 Peterson’s Algorithm

Figure 5.11 Peterson’s Algorithm for mutual exclusion. (1 of 3)

] Svsrem:

int favoredThread = 1;
boolean tilWantsToEnter
bhoolean t2WantsToEnter

alse;

- =h

startThreads();

© 2004 Deitel & Associates, Inc. All rights reserved. - _

22



5.4.2 Peterson’s Algorithm
Figure 5.11 Peterson’s Algorithm for mutual exclusion. (2 of 3)

9 Thread Ty:

11 void main(Q)

{
while ( !done )
14 {
15 tlWantsToEnter = true;
favoredThread = 2;
while ( t2WantsToEnter && favoredThread == 2 );
20
21
22 tlWantsToEnter = false;
}
¥

© 2004 Deitel & Associates, Inc. All rights reserved. - -

5.4.2 Peterson’s Algorithm

Figure 5.11 Peterson’s Algorithm for mutual exclusion. (3 of 3)

Thread Tr:

void main()

{
34 while ( !done )
15 {
1 t2WantsToEnter = true;
7 favoredThread = 1;
39 while ( tlWantsToEnter && favoredThread == 1 };
41
12
43 tZWantsToEnter = false;
44
46
47 I
Tt T

© 2004 Deitel & Associates, Inc. All rights reserved. - -

23



5.4.3 N-Thread Mutual Exclusion:
Lamport’s Bakery Algorithm

* Applicable to any number of threads
— Creates a queue of waiting threads by distributing numbered
“tickets”
— Each thread executes when its ticket’s number is the lowest of all
threads

— Unlike Dekker’s and Peterson’s Algorithms, the Bakery
Algorithm works in multiprocessor systems and for » threads

— Relatively simple to understand due to its real-world analog

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.4.3 N-Thread Mutual Exclusion:
Lamport’s Bakery Algorithm

Figure 5.12 Lamport’s Bakery Algorithm. (1 of 3)

Svstem:
boolean choosing[n];

int ticket[n]:

startThreads();

© 2004 Deitel & Associates, Inc. All rights reserved. - _

24



5.4.3 N-Thread Mutual Exclusion:
Lamport’s Bakery Algorithm

Figure 5.12 Lamport’s Bakery Algorithm. (2 of 3)

Thread T ,:
void main()
{

¥ = threadNumber();

while ( !done )

18 {

choosing[x] = true;
ticket[x] = maxValue( ticket ) +
choosing[x] = false;
for Cint 1 =03 i < n; i++)
{

if Ci=x)

{

continue;
}

© 2004 Deitel & Associates, Inc. All rights reserved. - -

5.4.3 N-Thread Mutual Exclusion:
Lamport’s Bakery Algorithm

Figure 5.12 Lamport’s Bakery Algorithm. (3 of 3)

while ( choosing[i] != false );
while ¢ ticket[i] != &é.t%cket[i] < ticket[x] );
} if i.ticket[}] == t1£kat[x] & 1 < x )
while ( Liéket[i] 1= 0 );
:
? ticket[x] = 0;

© 2004 Deitel & Associates, Inc. All rights reserved. - -

25



5.5 Hardware Solutions to the Mutual Exclusion Problem

* Implementing mutual exclusion in hardware

Can improve performance
Can decreased development time

» No need to implement complex software mutual exclusion
solutions like Lamport’s Algorithm

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.5.1 Disabling Interrupts

* Disabling interrupts

Works only on uniprocessor systems
Prevents the currently executing thread from being preempted
Could result in deadlock

» For example, thread waiting for I/O event in critical section

Technique is used rarely

© 2004 Deitel & Associates, Inc. All rights reserved. - _

26



5.5.2 Test-and-Set Instruction

* Use a machine-language instruction to ensure that
mutual exclusion primitives are performed indivisibly
— Such instructions are called atomic

— Machine-language instructions do not ensure mutual exclusion
alone—the software must properly use them

* For example, programmers must incorporate favored threads to
avoid indefinite postponement

— Used to simplify software algorithms rather than replace them
 Test-and-set instruction

- testAndset(a, b) copies the value of b to a, then sets b to
true

— Example of an atomic read-modify-write (RMW) cycle

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.5.2 Test-and-Set Instruction

Figure 5.13 testAndSet instruction for mutual exclusion. (1 of 3)

System:
boolean occupied = false;
startThreads();

Thread T:

void main()
{
boolean plMustWait = true;

while ( !done )
{
while ( plMustWait )

{
testAndSet( plMustWait, occupied );

}

© 2004 Deitel & Associates, Inc. All rights reserved. - _

27



5.5.2 Test-and-Set Instruction

Figure 5.13 testAndSet instruction for mutual exclusion. (2 of 3)

22 plMustWait = true;
occupied = false;

Thread .Ir_>

© 2004 Deitel & Associates, Inc. All rights reserved. - -

5.5.2 Test-and-Set Instruction

Figure 5.13 testAndSet instruction for mutual exclusion. (3 of 3)

void main()
{
boolean pZMustWait = true;
while ( !done )
i
while ( p2MustWait )
{
4 testAndSet( p2MustWait, occupied );
4 }
p2MustWait = true;
occupied = false;

}

© 2004 Deitel & Associates, Inc. All rights reserved. - -

28



5.5.3 Swap Instruction

« swap(a, b) exchanges the values of aand b
atomically

* Similar in functionality to test-and-set

- swap is more commonly implemented on multiple architectures

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.5.3 Swap Instruction

Figure 5.14 swap instruction for mutual exclusion. (1 of 3)

Svstem:

boolean occupied = false;
startThreads();

Thread T

void main()

{
11 boolean plMustWait = true;

© 2004 Deitel & Associates, Inc. All rights reserved. - _

29



5.5.3 Swap Instruction

Figure 5.14 swap instruction for mutual exclusion. (2 of 3)

13 while ( !done )

14 {

15 do

16 {

17 swap( plMustWait, occupied );
18 } while ( plMustWait );

19

plMustWait = true;
occupied = false;

© 2004 Deitel & Associates, Inc. All rights reserved. - -

5.5.3 Swap Instruction

Figure 5.14 swap instruction for mutual exclusion. (3 of 3)

Thread Ts:

void main()

{
boolean p2MustWait = true;
while ( !done )
{
{
swap( p2MustWait, occupied )};
} while ( p2MustWait );
46 p2MustWait = true;
occupied = false;
}
}

© 2004 Deitel & Associates, Inc. All rights reserved. - -

30



5.6 Semaphores

» Semaphores
— Software construct that can be used to enforce mutual exclusion
— Contains a protected variable
» Can be accessed only via wait and signal commands
* Also called P and V operations, respectively

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.6.1 Mutual Exclusion with Semaphores

 Binary semaphore: allow only one thread in its
critical section at once

— Wait operation
* If no threads are waiting, allow thread into its critical section
» Decrement protected variable (to 0 in this case)
» Otherwise place in waiting queue

— Signal operation
* Indicate that thread is outside its critical section
* Increment protected variable (from 0 to 1)
» A waiting thread (if there is one) may now enter

© 2004 Deitel & Associates, Inc. All rights reserved. - _




5.6.1 Mutual Exclusion with Semaphores

Figure 5.15 Mutual exclusion with semaphores.

Semaphore occupied = new Semaphore(l);

startThreads() ;
id main()
hile ( !done )

P( occupied );

V( occupied };

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.6.2 Thread Synchronization with Semaphores

» Semaphores can be used to notify other threads that
events have occurred
— Producer-consumer relationship
* Producer enters its critical section to produce value
» Consumer is blocked until producer finishes
» Consumer enters its critical section to read value
* Producer cannot update value until it is consumed

— Semaphores offer a clear, easy-to-implement solution to this
problem

© 2004 Deitel & Associates, Inc. All rights reserved. - _

32



5.6.2 Thread Synchronization with Semaphores

Figure 5.16 Producer/consumer relationship implemented with semaphores. (1 of 2)
Svsreme:

Semaphore valueProduced = new Semaphore(0);
Semaphore valueConsumed new Semaphore(l);
int sharedValue; |

startThreads();
Producer Thread:

void main()

{

int nextValueProduced;

while ( !done )

{

nextValueProduced = generateTheValue();
P( valueConsumed J;

sharedValue = nextValueProduced;

V{ valueProduced J;

© 2004 Deitel & Associates, Inc. All rights reserved. - -

5.6.2 Thread Synchronization with Semaphores

Figure 5.16 Producer/consumer relationship implemented with semaphores. (2 of 2)

6 Consumer Thread:

28 wvoid mainQ)

29 i
30 int nextValue;

31

2 while ( !done )

] {

34 P( valueProduced ); I v

5 nextValueConsumed = sharedValue;

. V( valueConsumed ); gnal that I

37 processTheValue( nextValueConsumed );

© 2004 Deitel & Associates, Inc. All rights reserved. - -

33



5.6.3 Counting Semaphores

* Counting semaphores
— Initialized with values greater than one

— Can be used to control access to a pool of identical resources

* Decrement the semaphore’s counter when taking resource from
pool

* Increment the semaphore’s counter when returning it to pool

« If no resources are available, thread is blocked until a resource
becomes available

© 2004 Deitel & Associates, Inc. All rights reserved. - _

5.6.4 Implementing Semaphores

» Semaphores can be implemented at application or
kernel level

— Application level: typically implemented by busy waiting
* Inefficient

— Kernel implementations can avoid busy waiting
* Block waiting threads until they are ready

— Kernel implementations can disable interrupts
* Guarantee exclusive semaphore access
* Must be careful to avoid poor performance and deadlock

* Implementations for multiprocessor systems must use a more
sophisticated approach

© 2004 Deitel & Associates, Inc. All rights reserved. - _

34



