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Objectives

• After reading this chapter, you should understand:
– the concept of a process.
– the process life cycle.
– process states and state transitions.
– process control blocks (PCBs)/process descriptors.
– how processors transition between processes via context 

switching.
– how interrupts enable hardware to communicate with software.
– how processes converse with one another via interprocess 

communication (IPC).
– UNIX processes.
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3.1 Introduction

• Computers perform operations concurrently
– For example, compiling a program, sending a file to a printer, 

rendering a Web page, playing music and receiving e-mail
– Processes enable systems to perform and track simultaneous 

activities
– Processes transition between process states
– Operating systems perform operations on processes such as 

creating, destroying, suspending, resuming and waking
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3.1.1 Definition of Process

• A program in execution
– A process has its own address space consisting of:

• Text region
– Stores the code that the processor executes

• Data region
– Stores variables and dynamically allocated memory

• Stack region
– Stores instructions and local variables for active procedure 

calls
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3.2 Process States: Life Cycle of a Process

• A process moves through a series of discrete process 
states:
– Running state

• The process is executing on a processor
– Ready state

• The process could execute on a processor if one were available
– Blocked state

• The process is waiting for some event to happen before it can 
proceed

• The OS maintains a ready list and a blocked list to 
store references to processes not running
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3.3 Process Management

• Operating systems provide fundamental services to 
processes including:
– Creating processes
– Destroying processes
– Suspending processes
– Resuming processes
– Changing a process’s priority
– Blocking processes
– Waking up processes
– Dispatching processes
– Interprocess communication (IPC)
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3.3.1 Process States and State Transitions

• Process states
– The act of assigning a processor to the first process on the ready 

list is called dispatching
– The OS may use an interval timer to allow a process to run for a

specific time interval or quantum
– Cooperative multitasking lets each process run to completion

• State Transitions
– At this point, there are four possible state transitions

• When a process is dispatched, it transitions from ready to running
• When the quantum expires, it transitions from running to ready
• When a process blocks, it transitions from running to blocked
• When the event occurs, it transitions from blocked to ready
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Figure 3.1 Process state transitions.

3.3.1 Process States and State Transitions
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3.3.2 Process Control Blocks (PCBs)/Process Descriptors

• PCBs maintain information that the OS needs to 
manage the process
– Typically include information such as

• Process identification number (PID)
• Process state
• Program counter
• Scheduling priority
• Credentials
• A pointer to the process’s parent process
• Pointers to the process’s child processes
• Pointers to locate the process’s data and instructions in memory
• Pointers to allocated resources

 2004 Deitel & Associates, Inc.  All rights reserved.

3.3.2 Process Control Blocks (PCBs)/Process Descriptors

• Process table
– The OS maintains pointers to each process’s PCB in a system-

wide or per-user process table
– Allows for quick access to PCBs
– When a process is terminated, the OS removes the process from 

the process table and frees all of the process’s resources
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Figure 3.2 Process table and process control blocks.

3.3.2 Process Control Blocks (PCBs)/Process Descriptors
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3.3.3 Process Operations

• A process may spawn a new process
– The creating process is called the parent process
– The created process is called the child process
– Exactly one parent process creates a child
– When a parent process is destroyed, operating systems typically 

respond in one of two ways:
• Destroy all child processes of that parent
• Allow child processes to proceed independently of their parents
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Figure 3.3 Process creation hierarchy.

3.3.3 Process Operations
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Figure 3.4 Process hierarchy in Linux.

3.3.3 Process Operations
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3.3.4 Suspend and Resume

• Suspending a process
– Indefinitely removes it from contention for time on a processor 

without being destroyed
– Useful for detecting security threats and for software debugging

purposes
– A suspension may be initiated by the process being suspended or 

by another process
– A suspended process must be resumed by another process
– Two suspended states:

• suspendedready
• suspendedblocked
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Figure 3.5 Process state transitions with suspend and resume.

3.3.4 Suspend and Resume
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3.3.5 Context Switching

• Context switches
– Performed by the OS to stop executing a running process and 

begin executing a previously ready process
– Save the execution context of the running process to its PCB
– Load the ready process’s execution context from its PCB
– Must be transparent to processes
– Require the processor to not perform any “useful” computation

• OS must therefore minimize context-switching time
– Performed in hardware by some architectures
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Figure 3.6 Context switch.

3.3.5 Context Switching
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3.4 Interrupts

• Interrupts enable software to respond to signals from hardware
– May be initiated by a running process

• Interrupt is called a trap
• Synchronous with the operation of the process
• For example, dividing by zero or referencing protected memory

– May be initiated by some event that may or may not be related to the 
running process

• Asynchronous with the operation of the process
• For example, a key is pressed on a keyboard or a mouse is moved

– Low overhead

• Polling is an alternative approach
– Processor repeatedly requests the status of each device
– Increases in overhead as the complexity of the system increases
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3.4.1 Interrupt Processing

• Handling interrupts
– After receiving an interrupt, the processor completes execution 

of the current instruction, then pauses the current process
– The processor will then execute one of the kernel’s interrupt-

handling functions
– The interrupt handler determines how the system should respond
– Interrupt handlers are stored in an array of pointers called the

interrupt vector
– After the interrupt handler completes, the interrupted process is 

restored and executed or the next process is executed
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Figure 3.7 Handling interrupts.

3.4.1 Interrupt Processing
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3.4.2 Interrupt Classes

• Supported interrupts depend on a system’s architecture
– The IA-32 specification distinguishes between two types of 

signals a processor may receive:
• Interrupts

– Notify the processor that an event has occurred or that an 
external device’s status has changed

– Generated by devices external to a processor
• Exceptions

– Indicate that an error has occurred, either in hardware or as a 
result of a software instruction

– Classified as faults, traps or aborts
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Figure 3.8 Common interrupt types recognized in the Intel IA-32 architecture.

3.4.2 Interrupt Classes
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Figure 3.9 Intel IA-32 exception classes.

3.4.2 Interrupt Classes
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3.5 Interprocess Communication

• Many operating systems provide mechanisms for 
interprocess communication (IPC)
– Processes must communicate with one another in 

multiprogrammed and networked environments
• For example, a Web browser retrieving data from a distant server

– Essential for processes that must coordinate activities to achieve a 
common goal
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3.5.1 Signals

• Software interrupts that notify a process that an event 
has occurred
– Do not allow processes to specify data to exchange with other 

processes
– Processes may catch, ignore or mask a signal

• Catching a signal involves specifying a routine that the OS calls 
when it delivers the signal

• Ignoring a signal relies on the operating system’s default action to 
handle the signal

• Masking a signal instructs the OS to not deliver signals of that type 
until the process clears the signal mask
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3.5.2 Message Passing

• Message-based interprocess communication
– Messages can be passed in one direction at a time

• One process is the sender and the other is the receiver
– Message passing can be bidirectional

• Each process can act as either a sender or a receiver
– Messages can be blocking or nonblocking

• Blocking requires the receiver to notify the sender when the message 
is received

• Nonblocking enables the sender to continue with other processing
– Popular implementation is a pipe

• A region of memory protected by the OS that serves as a buffer, 
allowing two or more processes to exchange data
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3.5.2 Message Passing

• IPC in distributed systems
– Transmitted messages can be flawed or lost

• Acknowledgement protocols confirm that transmissions have been 
properly received

• Timeout mechanisms retransmit messages if acknowledgements are 
not received

– Ambiguously named processes lead to incorrect message 
referencing

• Messages are passed between computers using numbered ports on 
which processes listen, avoiding this problem

– Security is a significant problem
• Ensuring authentication
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3.6 Case Study: UNIX Processes

• UNIX processes
– All processes are provided with a set of memory addresses, called 

a virtual address space
– A process’s PCB is maintained by the kernel in a protected region 

of memory that user processes cannot access
– A UNIX PCB stores:

• The contents of the processor registers
• PID
• The program counter
• The system stack

– All processes are listed in the process table
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3.6 Case Study: UNIX Processes

• UNIX processes continued
– All processes interact with the OS via system calls
– A process can spawn a child process by using the fork system call, 

which creates a copy of the parent process
• Child receives a copy of the parent’s resources as well

– Process priorities are integers between -20 and 19 (inclusive)
• A lower numerical priority value indicates a higher scheduling 

priority
– UNIX provides IPC mechanisms, such as pipes, to allow unrelated 

processes to transfer data
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Figure 3.10 UNIX system calls.

3.6 Case Study: UNIX Processes


