
1

 2004 Deitel & Associates, Inc. All rights reserved.

Chapter 3 – Process Concepts

Outline
3.1 Introduction
3.1.1 Definition of Process
3.2 Process States: Life Cycle of a Process
3.3 Process Management
3.3.1 Process States and State Transitions
3.3.2 Process Control Blocks (PCBs)/Process Descriptors
3.3.3 Process Operations
3.3.4 Suspend and Resume
3.3.5 Context Switching
3.4 Interrupts
3.4.1 Interrupt Processing
3.4.2 Interrupt Classes
3.5 Interprocess Communication
3.5.1 Signals
3.5.2 Message Passing
3.6 Case Study: UNIX Processes

 2004 Deitel & Associates, Inc. All rights reserved.

Objectives

• After reading this chapter, you should understand:
– the concept of a process.
– the process life cycle.
– process states and state transitions.
– process control blocks (PCBs)/process descriptors.
– how processors transition between processes via context

switching.
– how interrupts enable hardware to communicate with software.
– how processes converse with one another via interprocess

communication (IPC).
– UNIX processes.

2

 2004 Deitel & Associates, Inc. All rights reserved.

3.1 Introduction

• Computers perform operations concurrently
– For example, compiling a program, sending a file to a printer,

rendering a Web page, playing music and receiving e-mail
– Processes enable systems to perform and track simultaneous

activities
– Processes transition between process states
– Operating systems perform operations on processes such as

creating, destroying, suspending, resuming and waking

 2004 Deitel & Associates, Inc. All rights reserved.

3.1.1 Definition of Process

• A program in execution
– A process has its own address space consisting of:

• Text region
– Stores the code that the processor executes

• Data region
– Stores variables and dynamically allocated memory

• Stack region
– Stores instructions and local variables for active procedure

calls

3

 2004 Deitel & Associates, Inc. All rights reserved.

3.2 Process States: Life Cycle of a Process

• A process moves through a series of discrete process
states:
– Running state

• The process is executing on a processor
– Ready state

• The process could execute on a processor if one were available
– Blocked state

• The process is waiting for some event to happen before it can
proceed

• The OS maintains a ready list and a blocked list to
store references to processes not running

 2004 Deitel & Associates, Inc. All rights reserved.

3.3 Process Management

• Operating systems provide fundamental services to
processes including:
– Creating processes
– Destroying processes
– Suspending processes
– Resuming processes
– Changing a process’s priority
– Blocking processes
– Waking up processes
– Dispatching processes
– Interprocess communication (IPC)

4

 2004 Deitel & Associates, Inc. All rights reserved.

3.3.1 Process States and State Transitions

• Process states
– The act of assigning a processor to the first process on the ready

list is called dispatching
– The OS may use an interval timer to allow a process to run for a

specific time interval or quantum
– Cooperative multitasking lets each process run to completion

• State Transitions
– At this point, there are four possible state transitions

• When a process is dispatched, it transitions from ready to running
• When the quantum expires, it transitions from running to ready
• When a process blocks, it transitions from running to blocked
• When the event occurs, it transitions from blocked to ready

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 3.1 Process state transitions.

3.3.1 Process States and State Transitions

5

 2004 Deitel & Associates, Inc. All rights reserved.

3.3.2 Process Control Blocks (PCBs)/Process Descriptors

• PCBs maintain information that the OS needs to
manage the process
– Typically include information such as

• Process identification number (PID)
• Process state
• Program counter
• Scheduling priority
• Credentials
• A pointer to the process’s parent process
• Pointers to the process’s child processes
• Pointers to locate the process’s data and instructions in memory
• Pointers to allocated resources

 2004 Deitel & Associates, Inc. All rights reserved.

3.3.2 Process Control Blocks (PCBs)/Process Descriptors

• Process table
– The OS maintains pointers to each process’s PCB in a system-

wide or per-user process table
– Allows for quick access to PCBs
– When a process is terminated, the OS removes the process from

the process table and frees all of the process’s resources

6

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 3.2 Process table and process control blocks.

3.3.2 Process Control Blocks (PCBs)/Process Descriptors

 2004 Deitel & Associates, Inc. All rights reserved.

3.3.3 Process Operations

• A process may spawn a new process
– The creating process is called the parent process
– The created process is called the child process
– Exactly one parent process creates a child
– When a parent process is destroyed, operating systems typically

respond in one of two ways:
• Destroy all child processes of that parent
• Allow child processes to proceed independently of their parents

7

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 3.3 Process creation hierarchy.

3.3.3 Process Operations

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 3.4 Process hierarchy in Linux.

3.3.3 Process Operations

8

 2004 Deitel & Associates, Inc. All rights reserved.

3.3.4 Suspend and Resume

• Suspending a process
– Indefinitely removes it from contention for time on a processor

without being destroyed
– Useful for detecting security threats and for software debugging

purposes
– A suspension may be initiated by the process being suspended or

by another process
– A suspended process must be resumed by another process
– Two suspended states:

• suspendedready
• suspendedblocked

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 3.5 Process state transitions with suspend and resume.

3.3.4 Suspend and Resume

9

 2004 Deitel & Associates, Inc. All rights reserved.

3.3.5 Context Switching

• Context switches
– Performed by the OS to stop executing a running process and

begin executing a previously ready process
– Save the execution context of the running process to its PCB
– Load the ready process’s execution context from its PCB
– Must be transparent to processes
– Require the processor to not perform any “useful” computation

• OS must therefore minimize context-switching time
– Performed in hardware by some architectures

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 3.6 Context switch.

3.3.5 Context Switching

10

 2004 Deitel & Associates, Inc. All rights reserved.

3.4 Interrupts

• Interrupts enable software to respond to signals from hardware
– May be initiated by a running process

• Interrupt is called a trap
• Synchronous with the operation of the process
• For example, dividing by zero or referencing protected memory

– May be initiated by some event that may or may not be related to the
running process

• Asynchronous with the operation of the process
• For example, a key is pressed on a keyboard or a mouse is moved

– Low overhead

• Polling is an alternative approach
– Processor repeatedly requests the status of each device
– Increases in overhead as the complexity of the system increases

 2004 Deitel & Associates, Inc. All rights reserved.

3.4.1 Interrupt Processing

• Handling interrupts
– After receiving an interrupt, the processor completes execution

of the current instruction, then pauses the current process
– The processor will then execute one of the kernel’s interrupt-

handling functions
– The interrupt handler determines how the system should respond
– Interrupt handlers are stored in an array of pointers called the

interrupt vector
– After the interrupt handler completes, the interrupted process is

restored and executed or the next process is executed

11

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 3.7 Handling interrupts.

3.4.1 Interrupt Processing

 2004 Deitel & Associates, Inc. All rights reserved.

3.4.2 Interrupt Classes

• Supported interrupts depend on a system’s architecture
– The IA-32 specification distinguishes between two types of

signals a processor may receive:
• Interrupts

– Notify the processor that an event has occurred or that an
external device’s status has changed

– Generated by devices external to a processor
• Exceptions

– Indicate that an error has occurred, either in hardware or as a
result of a software instruction

– Classified as faults, traps or aborts

12

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 3.8 Common interrupt types recognized in the Intel IA-32 architecture.

3.4.2 Interrupt Classes

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 3.9 Intel IA-32 exception classes.

3.4.2 Interrupt Classes

13

 2004 Deitel & Associates, Inc. All rights reserved.

3.5 Interprocess Communication

• Many operating systems provide mechanisms for
interprocess communication (IPC)
– Processes must communicate with one another in

multiprogrammed and networked environments
• For example, a Web browser retrieving data from a distant server

– Essential for processes that must coordinate activities to achieve a
common goal

 2004 Deitel & Associates, Inc. All rights reserved.

3.5.1 Signals

• Software interrupts that notify a process that an event
has occurred
– Do not allow processes to specify data to exchange with other

processes
– Processes may catch, ignore or mask a signal

• Catching a signal involves specifying a routine that the OS calls
when it delivers the signal

• Ignoring a signal relies on the operating system’s default action to
handle the signal

• Masking a signal instructs the OS to not deliver signals of that type
until the process clears the signal mask

14

 2004 Deitel & Associates, Inc. All rights reserved.

3.5.2 Message Passing

• Message-based interprocess communication
– Messages can be passed in one direction at a time

• One process is the sender and the other is the receiver
– Message passing can be bidirectional

• Each process can act as either a sender or a receiver
– Messages can be blocking or nonblocking

• Blocking requires the receiver to notify the sender when the message
is received

• Nonblocking enables the sender to continue with other processing
– Popular implementation is a pipe

• A region of memory protected by the OS that serves as a buffer,
allowing two or more processes to exchange data

 2004 Deitel & Associates, Inc. All rights reserved.

3.5.2 Message Passing

• IPC in distributed systems
– Transmitted messages can be flawed or lost

• Acknowledgement protocols confirm that transmissions have been
properly received

• Timeout mechanisms retransmit messages if acknowledgements are
not received

– Ambiguously named processes lead to incorrect message
referencing

• Messages are passed between computers using numbered ports on
which processes listen, avoiding this problem

– Security is a significant problem
• Ensuring authentication

15

 2004 Deitel & Associates, Inc. All rights reserved.

3.6 Case Study: UNIX Processes

• UNIX processes
– All processes are provided with a set of memory addresses, called

a virtual address space
– A process’s PCB is maintained by the kernel in a protected region

of memory that user processes cannot access
– A UNIX PCB stores:

• The contents of the processor registers
• PID
• The program counter
• The system stack

– All processes are listed in the process table

 2004 Deitel & Associates, Inc. All rights reserved.

3.6 Case Study: UNIX Processes

• UNIX processes continued
– All processes interact with the OS via system calls
– A process can spawn a child process by using the fork system call,

which creates a copy of the parent process
• Child receives a copy of the parent’s resources as well

– Process priorities are integers between -20 and 19 (inclusive)
• A lower numerical priority value indicates a higher scheduling

priority
– UNIX provides IPC mechanisms, such as pipes, to allow unrelated

processes to transfer data

16

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 3.10 UNIX system calls.

3.6 Case Study: UNIX Processes

