Chapter 3 — Process Concepts

Outline
3.1
3141
3.2
3.3
3.31
3.3.2
3.3.3
3.34
3.35
3.4
3.41
3.4.2
3.5
3.51
3.5.2
3.6

Introduction

Definition of Process

Process States: Life Cycle of a Process
Process Management

Process States and State Transitions
Process Control Blocks (PCBs)/Process Descriptors
Process Operations

Suspend and Resume

Context Switching

Interrupts

Interrupt Processing

Interrupt Classes

Interprocess Communication

Signals

Message Passing

Case Study: UNIX Processes

© 2004 Deitel & Associates, Inc. All rights reserved. - -

Objectives

 After reading this chapter, you should understand:

— the concept of a process.

— the process life cycle.

— process states and state transitions.

— process control blocks (PCBs)/process descriptors.

— how processors transition between processes via context
switching.

— how interrupts enable hardware to communicate with software.

— how processes converse with one another via interprocess
communication (IPC).

— UNIX processes.

© 2004 Deitel & Associates, Inc. All rights reserved. - -

3.1 Introduction

* Computers perform operations concurrently
— For example, compiling a program, sending a file to a printer,
rendering a Web page, playing music and receiving e-mail
— Processes enable systems to perform and track simultaneous
activities
— Processes transition between process states

— Operating systems perform operations on processes such as
creating, destroying, suspending, resuming and waking

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.1.1 Definition of Process

* A program in execution

— A process has its own address space consisting of:
» Text region
— Stores the code that the processor executes
 Data region
— Stores variables and dynamically allocated memory
* Stack region

— Stores instructions and local variables for active procedure
calls

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.2 Process States: Life Cycle of a Process

» A process moves through a series of discrete process
states:
— Running state
» The process is executing on a processor
— Ready state
» The process could execute on a processor if one were available
— Blocked state
» The process is waiting for some event to happen before it can
proceed

* The OS maintains a ready list and a blocked list to
store references to processes not running

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.3 Process Management

» Operating systems provide fundamental services to
processes including:
— Creating processes
— Destroying processes
— Suspending processes
— Resuming processes
— Changing a process’s priority
— Blocking processes
— Waking up processes
— Dispatching processes
— Interprocess communication (IPC)

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.3.1 Process States and State Transitions

* Process states

— The act of assigning a processor to the first process on the ready
list is called dispatching

— The OS may use an interval timer to allow a process to run for a
specific time interval or quantum

— Cooperative multitasking lets each process run to completion

 State Transitions
— At this point, there are four possible state transitions
* When a process is dispatched, it transitions from ready to running
* When the quantum expires, it transitions from running to ready
* When a process blocks, it transitions from running to blocked
* When the event occurs, it transitions from blocked to ready

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.3.1 Process States and State Transitions

Figure 3.1 Process state transitions.

Awake Asleep
| I
| |
| Running :
&
| &5 | N |
| & ! |
| g |
S |
LN
|
| . &\4\“ | Al
| |
| 1
Ready | Blocked
| .
| .
| Wakeup

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.3.2 Process Control Blocks (PCBs)/Process Descriptors

 PCBs maintain information that the OS needs to
manage the process

— Typically include information such as
* Process identification number (PID)
* Process state
* Program counter
* Scheduling priority
* Credentials
* A pointer to the process’s parent process
* Pointers to the process’s child processes
* Pointers to locate the process’s data and instructions in memory
* Pointers to allocated resources

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.3.2 Process Control Blocks (PCBs)/Process Descriptors

* Process table

— The OS maintains pointers to each process’s PCB in a system-
wide or per-user process table

— Allows for quick access to PCBs

— When a process is terminated, the OS removes the process from
the process table and frees all of the process’s resources

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.3.2 Process Control Blocks (PCBs)/Process Descriptors

Figure 3.2 Process table and process control blocks.

Process table

PID PCB
1 | e T —— 1
2 . =
: : -—] |
n | ' L Process control block
|) b Program counter
- Registers
,[Process control block Process control block
— == - = . State
rcgram counter rogram counter Priority
Registers Registers Address space
'S;t..]te. ;S)tate Parent
m >
A';Zr' L A';r;”t)' Children
ress space
p ress space Open files
Parent Parent =
hild i :
Children Children Other flags
Open files Open files
Other flags Other flags

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.3.3 Process Operations

* A process may spawn a new process
— The creating process is called the parent process
— The created process is called the child process
— Exactly one parent process creates a child

— When a parent process is destroyed, operating systems typically
respond in one of two ways:

* Destroy all child processes of that parent
 Allow child processes to proceed independently of their parents

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.3.3 Process Operations
Figure 3.3 Process creation hierarchy.
A

AN

B JC | D)

JaL
7 £) (6)

A

L

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.3.3 Process Operations

Figure 3.4 Process hierarchy in Linux.

//- AL =
kswapd) [khubd pdflush login xfs klogd
/ bash
vi myprog finger

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.3.4 Suspend and Resume

» Suspending a process

— Indefinitely removes it from contention for time on a processor
without being destroyed

Useful for detecting security threats and for software debugging
purposes

A suspension may be initiated by the process being suspended or
by another process

— A suspended process must be resumed by another process
— Two suspended states:

* suspendedready

* suspendedblocked

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.3.4 Suspend and Resume

Figure 3.5 Process state transitions with suspend and resume.

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.3.5 Context Switching

* Context switches
— Performed by the OS to stop executing a running process and
begin executing a previously ready process
— Save the execution context of the running process to its PCB
— Load the ready process’s execution context from its PCB
— Must be transparent to processes
— Require the processor to not perform any “useful” computation
* OS must therefore minimize context-switching time
— Performed in hardware by some architectures

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.3.5 Context Switching

Figure 3.6 Context switch.

Process Py executes

Processor
on the processor Main memory
Py
Kernel stores process
"""" Py's execution context
| . ___to its PCB in memory — Y Pracess
;, [Py's PCB
After an interrupt |
pt,
the kernel decides Processor |
to dispatch a new
process and initiates Py Process
a context switch SR =a= | Py's PCB
T Kernel loads .
I process P;'s
{ execution context
r from its PCB
Processor in memory
Process P; executes
on the processor P,

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.4 Interrupts

* Interrupts enable software to respond to signals from hardware
— May be initiated by a running process
* Interrupt is called a trap
» Synchronous with the operation of the process
+ For example, dividing by zero or referencing protected memory

— May be initiated by some event that may or may not be related to the
running process

» Asynchronous with the operation of the process
» For example, a key is pressed on a keyboard or a mouse is moved
— Low overhead
* Polling is an alternative approach
— Processor repeatedly requests the status of each device
— Increases in overhead as the complexity of the system increases

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.4.1 Interrupt Processing

* Handling interrupts
— After receiving an interrupt, the processor completes execution
of the current instruction, then pauses the current process

— The processor will then execute one of the kernel’s interrupt-
handling functions

— The interrupt handler determines how the system should respond

— Interrupt handlers are stored in an array of pointers called the
interrupt vector

— After the interrupt handler completes, the interrupted process is
restored and executed or the next process is executed

© 2004 Deitel & Associates, Inc. All rights reserved. - _

10

3.4.1 Interrupt Processing

Figure 3.7 Handling interrupts.

Processor control

Time m i
|

1

Process Py |
| 1
|

N T Interrre—.
U~

Interrupting clock (2}
(2}

Interrupt vector =
T Y o) Execution context
————— saved to temporary

1/ location In memory

e Interrupt
(5) handler

B

(6) i | Process Py

i

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.4.2 Interrupt Classes

 Supported interrupts depend on a system’s architecture
— The TA-32 specification distinguishes between two types of
signals a processor may receive:
* Interrupts

— Notify the processor that an event has occurred or that an
external device’s status has changed

— Generated by devices external to a processor
» Exceptions

— Indicate that an error has occurred, either in hardware or as a
result of a software instruction

— Classified as faults, traps or aborts

© 2004 Deitel & Associates, Inc. All rights reserved. - _

11

3.4.2 Interrupt Classes

Figure 3.8 Common interrupt types recognized in the Intel IA-32 architecture.

Injerrupt Type

Vo

Timer

Interprocessor
interrupts

Pescription of Interrupts in Eack Type

These are initiated by the input/output hardware. They notify a
processor that the status of a channel or device has changed. I/O
interrupts are caused when an /O operation completes, for
example.

A system may contain devices that generate interrupts periodically.
These interrupts can be used for tasks such as timekeeping and
performance monitoring. Timers also enable the operating system
to determine if a process’s quantum has expired.

These interrupts allow one processor to send a message to another
in a multiprocessor system.

© 2004 Deitel & Associates, Inc. All rights reserved. - -

Exceplion Lass

Fault

Trap

Abort

3.4.2 Interrupt Classes

Figure 3.9 Intel IA-32 exception classes.

Pm‘fff/oﬂf of &rwfﬁm i Eqely Lass

These are caused by a wide range of problems that may occur as a
program’s machine-language instructions are executed. These
problems include division by zero, data (being operated upon) in
the wrong format, attempt to execute an invalid operation code,
attempt to reference a memory location beyond the limits of real
memory, attempt by a user process to execute a privileged instruc-
tion and attempt to reference a protected resource.

These are generated by exceptions such as overflow (when the
value stored by a register exceeds the capacity of the register) and
when program control reaches a breakpoint in code.

This occurs when the processor detects an error from which a pro-
cess cannot recover. For example, when an exception-handling
routine itself causes an exception, the processor may not be able
to handle both errors sequentially. This is called a double-fault
exception, which terminates the process that initiated it.

© 2004 Deitel & Associates, Inc. All rights reserved. - -

12

3.5 Interprocess Communication

* Many operating systems provide mechanisms for
interprocess communication (IPC)

— Processes must communicate with one another in
multiprogrammed and networked environments
» For example, a Web browser retrieving data from a distant server

— Essential for processes that must coordinate activities to achieve a
common goal

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.5.1 Signals

 Software interrupts that notify a process that an event
has occurred
— Do not allow processes to specify data to exchange with other
processes
— Processes may catch, ignore or mask a signal

* Catching a signal involves specifying a routine that the OS calls
when it delivers the signal

* Ignoring a signal relies on the operating system’s default action to
handle the signal

* Masking a signal instructs the OS to not deliver signals of that type
until the process clears the signal mask

© 2004 Deitel & Associates, Inc. All rights reserved. - _

13

3.5.2 Message Passing

* Message-based interprocess communication
— Messages can be passed in one direction at a time
* One process is the sender and the other is the receiver
— Message passing can be bidirectional
» Each process can act as either a sender or a receiver
— Messages can be blocking or nonblocking

* Blocking requires the receiver to notify the sender when the message
is received

* Nonblocking enables the sender to continue with other processing

Popular implementation is a pipe

* A region of memory protected by the OS that serves as a buffer,
allowing two or more processes to exchange data

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.5.2 Message Passing

* IPC in distributed systems

— Transmitted messages can be flawed or lost

» Acknowledgement protocols confirm that transmissions have been
properly received

* Timeout mechanisms retransmit messages if acknowledgements are
not received

— Ambiguously named processes lead to incorrect message
referencing

* Messages are passed between computers using numbered ports on
which processes listen, avoiding this problem

— Security is a significant problem
* Ensuring authentication

© 2004 Deitel & Associates, Inc. All rights reserved. - _

14

3.6 Case Study: UNIX Processes

« UNIX processes

— All processes are provided with a set of memory addresses, called
a virtual address space

A process’s PCB is maintained by the kernel in a protected region
of memory that user processes cannot access
A UNIX PCB stores:

 The contents of the processor registers

* PID

* The program counter

* The system stack

All processes are listed in the process table

© 2004 Deitel & Associates, Inc. All rights reserved. - _

3.6 Case Study: UNIX Processes

« UNIX processes continued
— All processes interact with the OS via system calls

— A process can spawn a child process by using the fork system call,
which creates a copy of the parent process
* Child receives a copy of the parent’s resources as well
— Process priorities are integers between -20 and 19 (inclusive)

* A lower numerical priority value indicates a higher scheduling
priority

UNIX provides IPC mechanisms, such as pipes, to allow unrelated
processes to transfer data

© 2004 Deitel & Associates, Inc. All rights reserved. - _

15

System Lall
fork

exec
wait
signal

exit

nice

3.6 Case Study: UNIX Processes

Figure 3.10 UNIX system calls.

Pescription
Spawns a child process and allocates to that process a copy of

its parent’s resources.

Loads a processs instructions and data into its address space
from a file.

Causes the calling process to block until its child process has
terminated.

Allows a process to specify a signal handler for a particular sig-
nal type.

Terminates the calling process.

Modifies a process’s scheduling priority.

© 2004 Deitel & Associates, Inc. All rights reserved. - -

16

