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Objectives

• After reading this chapter, you should understand:
– what an operating system is.
– a brief history of operating systems.
– a brief history of the Internet and the World Wide Web.
– core operating system components.
– goals of operating systems.
– operating system architectures.
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1.1 Introduction

• Unprecedented growth of computing during the past 
several decades.

• Desktop workstations execute billions of instructions 
per second (BIPS)

• Supercomputers can execute over a trillion 
instructions per second

• Computers are now employed in almost every aspect 
of life.



3

 2004 Deitel & Associates, Inc.  All rights reserved.

1.2 What Is an Operating System?

• Some years ago an operating system was defined as 
the software that controls the hardware.

• Landscape of computer systems has evolved 
significantly, requiring a more complicated definition.

• Applications are now designed to execute 
concurrently.
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1.2 What Is an Operating System?

• Separates applications from the hardware they access
– Software layer
– Manages software and hardware to produce desired results

• Operating systems primarily are resource managers
– Hardware

• Processors
• Memory
• Input/output devices
• Communication devices

– Software applications
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1.3 Early History: The 1940s and 1950s

• Operating systems evolved through several phases
– 1940s

• Early computers did not include operating systems
– 1950s

• Executed one job at a time
• Included technologies to smooth job-to-job transitions
• Single-stream batch-processing systems
• Programs and data submitted consecutively on tape

 2004 Deitel & Associates, Inc.  All rights reserved.

1.4 The 1960s

• 1960s
– Still batch-processing systems
– Process multiple jobs at once

• Multiprogramming
– One job could use processor while other jobs used 

peripheral devices
– Advanced operating systems developed to service 

multiple interactive users

• 1964
– IBM announced System/360 family of computers
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1.4 The 1960s

• Timesharing systems
– Developed to support many simultaneous interactive users
– Turnaround time was reduced to minutes or seconds

• Time between submission of job and the return of its results
– Real-time systems

• Supply response within certain bounded time period
– Improved development time and methods

• MIT used CTSS system to develop its own successor, Multics
– TSS, Multics and CP/CMS all incorporated virtual memory

• Address more memory locations than actually exist
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1.5 The 1970s

• Primarily multimode timesharing systems
– Supported batch processing, timesharing and real-time 

applications
– Personal computing only in incipient stages

• Fostered by early developments in microprocessor technology

• Department of Defense develops TCP/IP
– Standard communications protocol
– Widely used in military and university settings
– Security problems

• Growing volumes of information passed over vulnerable 
communications lines. 
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1.6 The 1980s

• 1980s
– Decade of personal computers and workstations
– Computing distributed to sites at which it was needed
– Personal computers proved relatively easy to learn and use

• Graphical user interfaces (GUI) 
– Transferring information between computers via networks 

became more economical and practical
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1.6 The 1980s

• Client/server computing model became widespread
– Clients request various services
– Servers perform requested services

• Software engineering field continued to evolve
– Major thrust by the United States government aimed at 

tighter control of Department of Defense software projects
• Realizing code reusability
• Greater degree of abstraction in programming languages
• Multiple threads of instructions that could execute independently
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1.7 History of the Internet and World Wide Web

• Advanced Research Projects Agency (ARPA)
– Department of Defense
– In late 1960s, created and implemented ARPAnet

• Grandparent of today’s Internet
• Networked main computer systems of ARPA-funded institutions
• Capable of near-instant communication via e-mail
• Designed to operate without centralized control
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1.7 History of the Internet and World Wide Web

• Transmission Control Protocol/Internet Protocol
– Set of rules for communicating over ARPANet
– TCP/IP manages communication between applications
– Ensure that messages routed properly from sender to receiver

• Error-correction
– Later opened to general commercial use
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1.7 History of the Internet and World Wide Web

• World Wide Web (WWW)
– Locate and view multimedia-based documents on almost any subject
– Early development begun in 1989 at CERN by Tim Berners-Lee
– Technology for sharing information via hyperlinked text documents
– HyperText Markup Language (HTML)

• Defines documents on WWW
– Hypertext Transfer Protocol (HTTP)

• Communications backbone used to transfer documents across WWW
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1.8 The 1990s

• Hardware performance improved exponentially
– Inexpensive processing power and storage 

• Execute large, complex programs on personal computers.
• Economical machines for extensive database and processing jobs 
• Mainframes rarely necessary

– Shift toward distributed computing rapidly accelerated
• Multiple independent computers performing common task
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1.8 The 1990s

• Operating system support for networking tasks became standard
– Increased productivity and communication

• Microsoft Corporation became dominant
– Windows operating systems

• Employed many concepts used in early Macintosh operating systems
• Enabled users to navigate multiple concurrent applications with ease. 

• Object technology became popular in many areas of computing
– Many applications written in object-oriented programming languages

• For example, C++ or Java
– Object-oriented operating systems (OOOS)

• Objects represent components of the operating system
– Concepts such as inheritance and interfaces

• Exploited to create modular operating systems
• Easier to maintain and extend than systems built with previous techniques
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1.8 The 1990s

• Most commercial software sold as object code
– The source code not included
– Enables vendors to hide proprietary information and 

programming techniques
• Free and open-source software became increasingly common 

in the 1990s 
– Open-source software distributed with the source code

• Allows individuals to examine and modify software
• Linux operating system and Apache Web server both open-source

• Richard Stallman launched the GNU project
– Recreate and extend tools for AT&T’s UNIX operating system
– He disagreed with concept of paying for permission to use software
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1.8 The 1990s

• Open Source Initiative (OSI)
– Founded to further benefits of open-source programming
– Facilitates enhancements to software products

• Permits anyone to test, debug and enhance applications
– Increases chance that subtle bugs will be caught and fixed

• Crucial for security errors which need to be fixed quickly
– Individuals and corporations can modify the source

• Create custom software to meet needs of certain environment
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1.8 The 1990s

• Operating systems became increasingly user friendly
– GUI features pioneered by Apple widely used and improved
– “Plug-and-play” capabilities built into operating systems

• Enable users to add and remove hardware components dynamically
• No need to manually reconfigure operating system
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1.9 2000 and Beyond

• Middleware
– Links two separate applications

• Often over a network and between incompatible machines
– Particularly important for Web services

• Simplifies communication across multiple architectures

• Web services 
– Encompass set of related standards
– Ready-to-use pieces of software on the Internet
– Enable any two applications to communicate and exchange data
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1.10 Application Bases

• IBM PC immediately spawned a huge software 
industry
– Independent software vendors (ISVs) market software 

packages to run under MS-DOS operating system. 
– Operating system must present environment conducive to 

rapid and easy application development
• Otherwise unlikely to be adopted widely

• Application base
– Combination of hardware and operating system used to 

develop applications
– Developers and users unwilling to abandon established 

application base
• Increased financial cost and time spent relearning
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Figure 1.1 Interaction between applications and the operating system.

1.10 Application Bases
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1.11 Operating System Environments

• Operating systems intended for high-end 
environments
– Special design requirements and hardware support needs

• Large main memory
• Special-purpose hardware
• Large numbers of processes

• Embedded systems
– Characterized by small set of specialized resources 
– Provide functionality to devices such as cell phones and PDAs
– Efficient resource management key to building successful 

operating system
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1.11 Operating System Environments

• Real-time systems
– Require that tasks be performed within particular (often short) 

time frame
• Autopilot feature of an aircraft must constantly adjust speed, 

altitude and direction 
– Such actions cannot wait indefinitely—and sometimes cannot 

wait at all
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1.11 Operating System Environments

• Virtual machines (VMs)
– Software abstraction of a computer 
– Often executes on top of native operating system

• Virtual machine operating system
– Manages resources provided by virtual machine

• Applications of virtual machines
– Allow multiple instances of an operating system to execute 

concurrently
– Emulation

• Software or hardware mimics functionality of hardware or software 
not present in system

– Promote portability
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Figure 1.2 Schematic of a virtual machine.

1.11 Operating System Environments
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1.12 Operating System Components and Goals

• Computer systems have evolved
– Early systems contained no operating system,
– Later gained multiprogramming and timesharing machines
– Personal computers and finally truly distributed systems
– Filled new roles as demand changed and grew
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1.12.1 Core Operating System Components

• User interaction with operating system 
– Often, through special application called a shell
– Kernel

• Software that contains core components of operating system

• Typical operating system components include: 
– Processor scheduler
– Memory manager
– I/O manager
– Interprocess communication (IPC) manager
– File system manager
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1.12.1 Core Operating System Components

• Multiprogrammed environments now common 
– Kernel manages the execution of processes
– Program components which execute independently but use 

single memory space to share data are called threads. 
– To access I/O device, process must issue system call

• Handled by device driver
• Software component that interacts directly with hardware
• Often contains device-specific commands
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1.12.2 Operating System Goals

• Users expect certain properties of operating systems
– Efficiency
– Robustness
– Scalability
– Extensibility
– Portability
– Security
– Protection
– Interactivity
– Usability 
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1.13 Operating System Architectures

• Today’s operating systems tend to be complex
– Provide many services 
– Support variety of hardware and software
– Operating system architectures help manage this complexity

• Organize operating system components
• Specify privilege with which each component executes
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1.13.1 Monolithic Architecture

• Monolithic operating system
– Every component contained in kernel

• Any component can directly communicate with any other
– Tend to be highly efficient
– Disadvantage is difficulty determining source of subtle errors
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Figure 1.3 Monolithic operating system kernel architecture.

1.13.1 Monolithic Architecture
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1.13.2 Layered Architecture

• Layered approach to operating systems
– Tries to improve on monolithic kernel designs

• Groups components that perform similar functions into layers

– Each layer communicates only with layers immediately 
above and below it

– Processes’ requests might pass through many layers before 
completion

– System throughput can be less than monolithic kernels
• Additional methods must be invoked to pass data and control
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Figure 1.4 Layers of the THE operating system.

1.13.2 Layered Architecture
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1.13.3 Microkernel Architecture

• Microkernel operating system architecture
– Provides only small number of services

• Attempt to keep kernel small and scalable
– High degree of modularity

• Extensible, portable and scalable
– Increased level of intermodule communication

• Can degrade system performance
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Figure 1.5 Microkernel operating system architecture.

1.13.3 Microkernel Architecture
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1.13.4 Networked and Distributed Operating Systems

• Network operating system
– Runs on one computer 
– Allows its processes to access resources on remote computers

• Distributed operating system
– Single operating system
– Manages resources on more than one computer system
– Goals include: 

• Transparent performance
• Scalability
• Fault tolerance
• Consistency
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Figure 1.6 Client/server networked operating system model.

1.13.4 Networked and Distributed Operating Systems


