
1

 2004 Deitel & Associates, Inc. All rights reserved.

Chapter 1 – Introduction to Operating Systems

Outline
1.1 Introduction
1.2 What Is an Operating System?
1.3 Early History: The 1940s and 1950s
1.4 The 1960s
1.5 The 1970s
1.6 The 1980s
1.7 History of the Internet and World Wide Web
1.8 The 1990s
1.9 2000 and Beyond
1.10 Application Bases
1.11 Operating System Environments
1.12 Operating System Components and Goals

1.12.1 Core Operating System Components
1.12.2 Operating System Goals

 2004 Deitel & Associates, Inc. All rights reserved.

Chapter 1 – Introduction to Operating Systems

Outline (continued)
1.13 Operating System Architectures

1.13.1 Monolithic Architecture
1.13.2 Layered Architecture
1.13.3 Microkernel Architecture
1.13.4 Networked and Distributed Operating
Systems

2

 2004 Deitel & Associates, Inc. All rights reserved.

Objectives

• After reading this chapter, you should understand:
– what an operating system is.
– a brief history of operating systems.
– a brief history of the Internet and the World Wide Web.
– core operating system components.
– goals of operating systems.
– operating system architectures.

 2004 Deitel & Associates, Inc. All rights reserved.

1.1 Introduction

• Unprecedented growth of computing during the past
several decades.

• Desktop workstations execute billions of instructions
per second (BIPS)

• Supercomputers can execute over a trillion
instructions per second

• Computers are now employed in almost every aspect
of life.

3

 2004 Deitel & Associates, Inc. All rights reserved.

1.2 What Is an Operating System?

• Some years ago an operating system was defined as
the software that controls the hardware.

• Landscape of computer systems has evolved
significantly, requiring a more complicated definition.

• Applications are now designed to execute
concurrently.

 2004 Deitel & Associates, Inc. All rights reserved.

1.2 What Is an Operating System?

• Separates applications from the hardware they access
– Software layer
– Manages software and hardware to produce desired results

• Operating systems primarily are resource managers
– Hardware

• Processors
• Memory
• Input/output devices
• Communication devices

– Software applications

4

 2004 Deitel & Associates, Inc. All rights reserved.

1.3 Early History: The 1940s and 1950s

• Operating systems evolved through several phases
– 1940s

• Early computers did not include operating systems
– 1950s

• Executed one job at a time
• Included technologies to smooth job-to-job transitions
• Single-stream batch-processing systems
• Programs and data submitted consecutively on tape

 2004 Deitel & Associates, Inc. All rights reserved.

1.4 The 1960s

• 1960s
– Still batch-processing systems
– Process multiple jobs at once

• Multiprogramming
– One job could use processor while other jobs used

peripheral devices
– Advanced operating systems developed to service

multiple interactive users

• 1964
– IBM announced System/360 family of computers

5

 2004 Deitel & Associates, Inc. All rights reserved.

1.4 The 1960s

• Timesharing systems
– Developed to support many simultaneous interactive users
– Turnaround time was reduced to minutes or seconds

• Time between submission of job and the return of its results
– Real-time systems

• Supply response within certain bounded time period
– Improved development time and methods

• MIT used CTSS system to develop its own successor, Multics
– TSS, Multics and CP/CMS all incorporated virtual memory

• Address more memory locations than actually exist

 2004 Deitel & Associates, Inc. All rights reserved.

1.5 The 1970s

• Primarily multimode timesharing systems
– Supported batch processing, timesharing and real-time

applications
– Personal computing only in incipient stages

• Fostered by early developments in microprocessor technology

• Department of Defense develops TCP/IP
– Standard communications protocol
– Widely used in military and university settings
– Security problems

• Growing volumes of information passed over vulnerable
communications lines.

6

 2004 Deitel & Associates, Inc. All rights reserved.

1.6 The 1980s

• 1980s
– Decade of personal computers and workstations
– Computing distributed to sites at which it was needed
– Personal computers proved relatively easy to learn and use

• Graphical user interfaces (GUI)
– Transferring information between computers via networks

became more economical and practical

 2004 Deitel & Associates, Inc. All rights reserved.

1.6 The 1980s

• Client/server computing model became widespread
– Clients request various services
– Servers perform requested services

• Software engineering field continued to evolve
– Major thrust by the United States government aimed at

tighter control of Department of Defense software projects
• Realizing code reusability
• Greater degree of abstraction in programming languages
• Multiple threads of instructions that could execute independently

7

 2004 Deitel & Associates, Inc. All rights reserved.

1.7 History of the Internet and World Wide Web

• Advanced Research Projects Agency (ARPA)
– Department of Defense
– In late 1960s, created and implemented ARPAnet

• Grandparent of today’s Internet
• Networked main computer systems of ARPA-funded institutions
• Capable of near-instant communication via e-mail
• Designed to operate without centralized control

 2004 Deitel & Associates, Inc. All rights reserved.

1.7 History of the Internet and World Wide Web

• Transmission Control Protocol/Internet Protocol
– Set of rules for communicating over ARPANet
– TCP/IP manages communication between applications
– Ensure that messages routed properly from sender to receiver

• Error-correction
– Later opened to general commercial use

8

 2004 Deitel & Associates, Inc. All rights reserved.

1.7 History of the Internet and World Wide Web

• World Wide Web (WWW)
– Locate and view multimedia-based documents on almost any subject
– Early development begun in 1989 at CERN by Tim Berners-Lee
– Technology for sharing information via hyperlinked text documents
– HyperText Markup Language (HTML)

• Defines documents on WWW
– Hypertext Transfer Protocol (HTTP)

• Communications backbone used to transfer documents across WWW

 2004 Deitel & Associates, Inc. All rights reserved.

1.8 The 1990s

• Hardware performance improved exponentially
– Inexpensive processing power and storage

• Execute large, complex programs on personal computers.
• Economical machines for extensive database and processing jobs
• Mainframes rarely necessary

– Shift toward distributed computing rapidly accelerated
• Multiple independent computers performing common task

9

 2004 Deitel & Associates, Inc. All rights reserved.

1.8 The 1990s

• Operating system support for networking tasks became standard
– Increased productivity and communication

• Microsoft Corporation became dominant
– Windows operating systems

• Employed many concepts used in early Macintosh operating systems
• Enabled users to navigate multiple concurrent applications with ease.

• Object technology became popular in many areas of computing
– Many applications written in object-oriented programming languages

• For example, C++ or Java
– Object-oriented operating systems (OOOS)

• Objects represent components of the operating system
– Concepts such as inheritance and interfaces

• Exploited to create modular operating systems
• Easier to maintain and extend than systems built with previous techniques

 2004 Deitel & Associates, Inc. All rights reserved.

1.8 The 1990s

• Most commercial software sold as object code
– The source code not included
– Enables vendors to hide proprietary information and

programming techniques
• Free and open-source software became increasingly common

in the 1990s
– Open-source software distributed with the source code

• Allows individuals to examine and modify software
• Linux operating system and Apache Web server both open-source

• Richard Stallman launched the GNU project
– Recreate and extend tools for AT&T’s UNIX operating system
– He disagreed with concept of paying for permission to use software

10

 2004 Deitel & Associates, Inc. All rights reserved.

1.8 The 1990s

• Open Source Initiative (OSI)
– Founded to further benefits of open-source programming
– Facilitates enhancements to software products

• Permits anyone to test, debug and enhance applications
– Increases chance that subtle bugs will be caught and fixed

• Crucial for security errors which need to be fixed quickly
– Individuals and corporations can modify the source

• Create custom software to meet needs of certain environment

 2004 Deitel & Associates, Inc. All rights reserved.

1.8 The 1990s

• Operating systems became increasingly user friendly
– GUI features pioneered by Apple widely used and improved
– “Plug-and-play” capabilities built into operating systems

• Enable users to add and remove hardware components dynamically
• No need to manually reconfigure operating system

11

 2004 Deitel & Associates, Inc. All rights reserved.

1.9 2000 and Beyond

• Middleware
– Links two separate applications

• Often over a network and between incompatible machines
– Particularly important for Web services

• Simplifies communication across multiple architectures

• Web services
– Encompass set of related standards
– Ready-to-use pieces of software on the Internet
– Enable any two applications to communicate and exchange data

 2004 Deitel & Associates, Inc. All rights reserved.

1.10 Application Bases

• IBM PC immediately spawned a huge software
industry
– Independent software vendors (ISVs) market software

packages to run under MS-DOS operating system.
– Operating system must present environment conducive to

rapid and easy application development
• Otherwise unlikely to be adopted widely

• Application base
– Combination of hardware and operating system used to

develop applications
– Developers and users unwilling to abandon established

application base
• Increased financial cost and time spent relearning

12

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 1.1 Interaction between applications and the operating system.

1.10 Application Bases

 2004 Deitel & Associates, Inc. All rights reserved.

1.11 Operating System Environments

• Operating systems intended for high-end
environments
– Special design requirements and hardware support needs

• Large main memory
• Special-purpose hardware
• Large numbers of processes

• Embedded systems
– Characterized by small set of specialized resources
– Provide functionality to devices such as cell phones and PDAs
– Efficient resource management key to building successful

operating system

13

 2004 Deitel & Associates, Inc. All rights reserved.

1.11 Operating System Environments

• Real-time systems
– Require that tasks be performed within particular (often short)

time frame
• Autopilot feature of an aircraft must constantly adjust speed,

altitude and direction
– Such actions cannot wait indefinitely—and sometimes cannot

wait at all

 2004 Deitel & Associates, Inc. All rights reserved.

1.11 Operating System Environments

• Virtual machines (VMs)
– Software abstraction of a computer
– Often executes on top of native operating system

• Virtual machine operating system
– Manages resources provided by virtual machine

• Applications of virtual machines
– Allow multiple instances of an operating system to execute

concurrently
– Emulation

• Software or hardware mimics functionality of hardware or software
not present in system

– Promote portability

14

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 1.2 Schematic of a virtual machine.

1.11 Operating System Environments

 2004 Deitel & Associates, Inc. All rights reserved.

1.12 Operating System Components and Goals

• Computer systems have evolved
– Early systems contained no operating system,
– Later gained multiprogramming and timesharing machines
– Personal computers and finally truly distributed systems
– Filled new roles as demand changed and grew

15

 2004 Deitel & Associates, Inc. All rights reserved.

1.12.1 Core Operating System Components

• User interaction with operating system
– Often, through special application called a shell
– Kernel

• Software that contains core components of operating system

• Typical operating system components include:
– Processor scheduler
– Memory manager
– I/O manager
– Interprocess communication (IPC) manager
– File system manager

 2004 Deitel & Associates, Inc. All rights reserved.

1.12.1 Core Operating System Components

• Multiprogrammed environments now common
– Kernel manages the execution of processes
– Program components which execute independently but use

single memory space to share data are called threads.
– To access I/O device, process must issue system call

• Handled by device driver
• Software component that interacts directly with hardware
• Often contains device-specific commands

16

 2004 Deitel & Associates, Inc. All rights reserved.

1.12.2 Operating System Goals

• Users expect certain properties of operating systems
– Efficiency
– Robustness
– Scalability
– Extensibility
– Portability
– Security
– Protection
– Interactivity
– Usability

 2004 Deitel & Associates, Inc. All rights reserved.

1.13 Operating System Architectures

• Today’s operating systems tend to be complex
– Provide many services
– Support variety of hardware and software
– Operating system architectures help manage this complexity

• Organize operating system components
• Specify privilege with which each component executes

17

 2004 Deitel & Associates, Inc. All rights reserved.

1.13.1 Monolithic Architecture

• Monolithic operating system
– Every component contained in kernel

• Any component can directly communicate with any other
– Tend to be highly efficient
– Disadvantage is difficulty determining source of subtle errors

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 1.3 Monolithic operating system kernel architecture.

1.13.1 Monolithic Architecture

18

 2004 Deitel & Associates, Inc. All rights reserved.

1.13.2 Layered Architecture

• Layered approach to operating systems
– Tries to improve on monolithic kernel designs

• Groups components that perform similar functions into layers

– Each layer communicates only with layers immediately
above and below it

– Processes’ requests might pass through many layers before
completion

– System throughput can be less than monolithic kernels
• Additional methods must be invoked to pass data and control

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 1.4 Layers of the THE operating system.

1.13.2 Layered Architecture

19

 2004 Deitel & Associates, Inc. All rights reserved.

1.13.3 Microkernel Architecture

• Microkernel operating system architecture
– Provides only small number of services

• Attempt to keep kernel small and scalable
– High degree of modularity

• Extensible, portable and scalable
– Increased level of intermodule communication

• Can degrade system performance

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 1.5 Microkernel operating system architecture.

1.13.3 Microkernel Architecture

20

 2004 Deitel & Associates, Inc. All rights reserved.

1.13.4 Networked and Distributed Operating Systems

• Network operating system
– Runs on one computer
– Allows its processes to access resources on remote computers

• Distributed operating system
– Single operating system
– Manages resources on more than one computer system
– Goals include:

• Transparent performance
• Scalability
• Fault tolerance
• Consistency

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 1.6 Client/server networked operating system model.

1.13.4 Networked and Distributed Operating Systems

