
Chapter 5 – Deitel – Lesson Plan for Abrams’ Section

Items to Highlight

Section 5.1
Ø Topic of CH5 is how to implement synchronization .primitives
Ø (Ch6: is how to use those primitives to write useful programs)

Section 5.2
Ø Consider again web server example.
Ø To prevent denial of service attack, we used a counter to limit number of forked

children.
Ø How is “CTR++” implemented ATOMICALLY?

o Harder than it first appears!
o Assembly sequence: Load, INC, Store
o What if multiple children interleave this sequence?

§ If CTR=100, and 2 children do sequence, what are all possible
values of CTR after both finish CTR++? (101 or 102)

o HOW CAN WE FORCE SERIALIZATION?
§ Either do it in SOFTWARE or in HARDWARE to LOCK and

UNLOCK before/after CRITICAL SECTION.
§ Chapter 5 has software algorithms.
§ Hardware solution might be EXCHANGE instruction.
§ Key is to do load/store atomically.

Section 5.2.1 Java Code for producer/consumer with NO synchronization
§ SLIDE 16: the main program launches producer & consumer
§ SLIDE 17-19: possible outputs
§ Classes: Unsynchronized, Producer, Consumer

o Producer sets buffer successively to 1 to 4.
o Consumer reads buffer 4 times and outputs value.

§ Interface: Buffer (Slide 7 and then Slides 14-15 with implementation)
§ Producer: Slides 8-10
§ Consumer: Slides 11-13
§ WHAT IS MAX VALUE consumer will ever print? 4*4=16/
§ WHAT IS MIN VALUE consumer will ever print? 4*(-1)=-4.

Section 5.4: Software Solution to ME
Let’s play a game. Two teams. Each can read/write a value that a 3rd player (memory)
keeps track of. How can we guarantee two teams are not simultaneously in classroom?

Solution: Dekker’s algorithm (slides 24-25)

Section 5.4.3: Lamport’s Bakery Algorithm (slides 47-50)

Purpose: Mutual exclusion among N threads

Compared to Dekker & Peterson algorithms:
Ø Works with N, not 2, threads
Ø Works with multiprocessors
Ø Overview:

o Tickets assigned like a bakery.
o However, 2 tickets can have same value.
o Priority given to LOWEST ticket number AND SMALLEST

thread number to break ties.
Ø Look at algorithm on slides 48-51

Good properties of the algorithm:
Ø Guarantees ME
Ø No indefinite postponement
Ø No deadlock

Section 5.5: HW Solutions
1. Disable Interrupts (what are pros/cons? Does it work on a multiprocessor?)
2. TestAndSet (or ReadModifyWrite)
3. Swap

Section 5.6: Semaphores

Ø IMPORTANT: Semaphore is a programming concept that is built on
some ME mechanism (Lamport bakery, test/set, swap, disable interrupts)

Ø Semaphore = Non-negative integer + FIFO queue of waiting threads
Ø Two types of semaphores

o Binary (value is 0 or 1)
o Counting (value is integer)

Ø Two operations
o P (decrement or block)
o V (unblock or increment)

Ø P operation:
o if S>0 then S-- else block

Ø V operation:
o if Q not empty then unblock else S++

Ø Go over slides 61-68

