
Chapter 3 – Dietel – Lesson Plan for Abrams’ Section

Items to Highlight

q Why do we need concurrency in a single-processor computer? Ask class for
examples from every-day life.

o Your mail client wants to asynchronously change a desktop icon to show
that you have new mail.

o You want to compose a new email while your computer sends/receives
other email.

o You want to print a document while editing another document.
o You are a developer, and find it convenient to architect code using

modules which run concurrently – such as a windowing system that listens
for GUI events while other code draws the controls in a window.

q What is a process?
q What data structures does the OS need to…

o Keep track of what processes exist?
§ Process table – essentially what you see from the “ps” command.

o Keep track of the “state” of each process?
§ What info must be kept about a process in a PCB? See slide 11.

q What are the basic states of a process?
o Ready, Running, Blocked
o What are the transitions? Draw on board.

q What process management must be done?
o See slide 6.

q Processes are created in hierarchical relationship – See slide 14.
o INIT is process 1.
o Child inherits I/O descriptors from parent
o If parent dies, what happens to kids? (Inherited by login shell.)
o If a parent dies before a child, and you look at the child’s PCB, what is

recorded for the parent pid?
§ For this orphan, its parent pid becomes 1 (init), because init never

terminates.
o In Unix, if child dies after parent, child becomes zombie waiting forever

for parent to execute “wait”.
q Suspend/Resume: section 3.3.4. Read book. Not really used today.
q Context switching (3.3.5)

o What causes a context switch?
§ Timer interrupt
§ Kernel call (e.g., to request I/O)
§ HW interrupt

o Mention: when interrupt raised (e.g., timer), current instruction finishes.
o Talk with class to reason out how exactly a context switch is implemented.
o Talk about RISC having multiple context registers.

o Mention that interrupt handler on some machines must save its own
registers on stack upon entry to avoid cost of saving all registers.

