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CS 3204 Midterm Solution 
 
47 students took the midterm. The table below shows who graded which 
problem. If you have questions, read this handout first, then address your 
question to the person who graded it. If you can’t find a resolution, come and see 
me. 

Problem 1 2 3 4 Total 
Possible Pts 24 26 26 24 100 
Median 11 20 14 12 56 
Average 11.3 18.9 13.5 10.5 54.3 
StDev 7.0 5.4 5.6 5.8 15.0 
Min 0 5 0 0 8 
Max 24 26 24 24 80 
Grader Peter Godmar Peter Godmar  

 
This midterm counts for about 15% of your grade. Although your final grade will 
depend on both exams and the project, students who have scored lower than 40 
should be aware that they are at risk of failing this class. They will need to show 
significant improvement in the final exam. Students who have scored lower than 
50 are at risk of receiving a grade lower than the C that is required by CS classes 
that have CS 3204 as a prerequisite. 
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Solutions are shown in this color. 
Grading comments are shown like this. 
 

1. Implementing OpenMP (24 pts) 
The OpenMP Application Programming Interface (API) supports multi-platform 
shared-memory parallel programming in C/C++ and Fortran. In C/C++, 
programmers can insert #pragma preprocessor directives in their code to instruct 
the compiler how to parallelize their code. OpenMP uses the fork/join parallelism 
model in which a master thread spawns off and later joins worker threads during 
regions of parallel execution, as depicted in the Figure below: 
 

 
Source: openmp.org 
 
In this question, you should apply your knowledge of thread and synchronization 
APIs and show how a compiler might implement parts of this specification by 
translating C/C++ with OpenMP #pragmas into C code. You may assume the 
presence of a Pintos- or POSIX Threads-style thread API for C, including 
thread_create() and thread_join() primitives, mutexes, semaphores, and 
condition variables (if needed). 
 

a) (12 pts) One of the simplest OpenMP constructs is the parallel for-loop. 
For instance, to add two vectors, a programmer may write the following 
OpenMP code: 
 
/* Add two vectors 'a' and 'b' and place the sum in 'sum'. */ 
void 
vector_add(double *a, double *b, double *sum, int n) 
{ 
    int i; 
    #pragma omp parallel for 
    for (i = 0; i < n; i++) 
        sum[i] = a[i] + b[i]; 
} 
 
The amount of work done in the loop is evenly distributed among the 
participating threads.  
Show C code that may be produced by an OpenMP compiler when 
compiling the code above. Be sure to include all necessary 
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synchronization code and show how the master thread distributes the 
work among the worker threads.  
To simplify the problem, you may assume that the number of threads NT is 
a constant, and that n % NT == 0. You may also assume that each parallel 
region spawns a new team of threads (though real-world OpenMP 
implementations reuse a pool of threads). 
 
/* A unit of work – chunks of three vectors  
 * ‘a’, ‘b’, and ‘sum’ of equal length ‘n’ 
 */ 
struct vector_chunk { 
    double *a, *b, *sum; 
    int n; 
}; 
 
/* Add a chunk of two vectors */ 
static void *add_chunk(void *_chunk)  
{ 
    struct vector_chunk *chunk = _chunk; 
    int i; 
    for (i = 0; i < chunk->n; i++) 
        chunk->sum[i] = chunk->a[i] + chunk->b[i]; 
    free (chunk); 
    return NULL; 
} 
 
/* Add two vectors 'a' and 'b' and place the sum in 'sum'. */ 
void 
vector_add(double *a, double *b, double *sum, int n) 
{ 
    int thread; 
    tid_t threadids[NT]; 
     
    // start NT-1 threads and assign a chunk of the vector 
    // addition to each thread 
    for (thread = 0; thread < NT - 1; thread++) { 
        struct vector_chunk *chunk = malloc(sizeof *chunk); 
        chunk->a = a + thread * n/NT; 
        chunk->b = b + thread * n/NT; 
        chunk->sum = sum + thread * n/NT; 
        chunk->n = n / NT; 
   threadids[thread] = thread_create(add_chunk, chunk); 
    } 
     
    // set up work unit for master thread 
    struct vector_chunk master_thread_chunk = { 
        .a = a + thread * n/NT, 
        .b = b + thread * n/NT, 
        .sum = sum + thread * n/NT, 
        .n = n / NT 
    }; 
    add_chunk(&master_thread_chunk); 
 
    // wait until all threads have finished their work 
    for (thread = 0; thread < NT - 1; thread++) { 
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        thread_join(threadids[thread]); 
    } 
} 

 
Note: even though the actual OpenMP standard requires that the master 
thread performs one of the chunks of work, we also accepted solutions for full 
credit that spawned NT threads and in which the master thread only waits for 
those threads to finish. 
 

For full credit, you didn’t need to show all details, just the essential approach of splitting 
work, and forking and joining threads to do it. 

 
b) (12 pts) OpenMP also supports reductions in an efficient manner.  For 

instance, the dot product of two vectors can be computed as follows: 
 

/* Compute and return the dot produce of vectors 'a' and 'b'. */ 
double 
vector_dot_product(double *a, double *b, int n) 
{ 
    double dotproduct = 0; 
    int i; 
 
    #pragma omp parallel for reduction(+:dotproduct) 
    for (i = 0; i < n; i++) 
        dotproduct += a[i] * b[i]; 
 
    return dotproduct; 
} 
 
Show the code an OpenMP compiler would produce to implement 
reduction. Your code must be thread-safe, but must avoid unnecessary or 
excessive synchronization.   
 
/* A unit of work – chunks of three vectors  
 * ‘a’, ‘b’, and ‘sum’ of equal length ‘n’ 
 */ 
struct vector_chunk { 
    double *a, *b, dotproduct; 
    int n; 
}; 
 
/* Compute partial dot product for a chunk of two vectors */ 
static void *dot_product_chunk(void *_chunk)  
{ 
    struct vector_chunk *chunk = _chunk; 
    int i; 
    double dotproduct = 0; 
 
    for (i = 0; i < chunk->n; i++) 
        dotproduct += chunk->a[i] * chunk->b[i]; 
 
    chunk->dotproduct = dot_product; 
    return NULL; 
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} 
 
/* Compute and return the dot produce of vectors 'a' and 'b'. */ 
double 
vector_dot_product(double *a, double *b, int n) 

      { 
    int thread; 
    tid_t threadids[NT]; 
    struct vector_chunk *chunk[NT]; 
             
    // start NT-1 threads and assign a chunk of the vector 
    // dot product to each thread 
    for (thread = 0; thread < NT - 1; thread++) { 
        chunk[thread] = malloc(sizeof *chunk); 
        chunk[thread]->a = a + thread * n/NT; 
        chunk[thread]->b = b + thread * n/NT; 
        chunk[thread]->n = n / NT; 
   threadids[thread] =  
            thread_create(add_chunk, chunk[thread]); 
    } 
     
    // set up work unit for master thread 
    struct vector_chunk master_thread_chunk = { 
        .a = a + thread * n/NT, 
        .b = b + thread * n/NT, 
        .n = n / NT 
    }; 
    dot_product_chunk(&master_thread_chunk); 
    double dotproduct = master_thread_chunk.dotproduct; 
 
    // wait until all threads have finished their work 
    for (thread = 0; thread < NT - 1; thread++) { 
        thread_join(threadids[thread]); 
        dotproduct += chunk[thread]->dotproduct; 
        free(chunk[thread]); 
    } 
 
    return dotproduct; 
} 

 
Note: even though the actual OpenMP standard requires that the master 
thread performs one of the chunks of work, we also accepted solutions for full 
credit that spawned NT threads and in which the master thread only waits for 
those threads to finish.  

 

2. Critical Sections, Locks, Spinlocks (26 pts) 
a) (8 pts) Consider the following attempt at solving the critical section 

problem for 2 threads t0 and t1: 
 

 
enum { T0, T1 } turn = T0; // turn is a global shared variable 
 
// thread T0 uses these // thread T1 uses these 
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// functions to enter/leave the 
// critical section  
void critical_section_enter_t0() 
{ 
 while (turn != T0) 
  continue; 
} 
 
void critical_section_leave_t0() 
{ 
 turn = T1; 
} 

// functions 
 
void critical_section_enter_t1() 
{ 
 while (turn != T1) 
  continue; 
} 
 
void critical_section_leave_t1() 
{ 
 turn = T0; 
} 
 

 
i. (4 pts) Does this proposal provide mutual exclusion for the critical 

section? Justify your answer! 
 

Yes, it does. The variable ‘turn’ is either T0 or T1, and if it is T0, then 
only thread T0 can progress past ‘critical_section_enter_t0’, and vice 
versa. 

 
ii. (4 pts) Is this proposal a satisfactory solution to the critical section 

problem? Justify your answer! 
 

No, it is not.  It does not guarantee progress. In particular, thread T0 
cannot reenter the critical section after it has left it unless thread T1 
entered and left the critical section in the interim. Consider: 
 
critical_section_enter_t0(); 
critical_section_leave_t0(); 

              // may block even though t1 is not in the critical section 
              critical_section_enter_t0();  
              critical_section_leave_t0(); 
 

Note: for a solution to be satisfactory, it has to provide the three criteria mutual exclusion, 
guaranteed progress, and bounded waiting. It is not required that it prevents starvation or 
deadlock (even correct solutions to the critical section problem, such as locks, may lead to 
deadlock when used incorrectly, and may lead to starvation when combined with strict 
priority scheduling.) It’s also wrong to argue that if one thread never gives up the critical 
section, the other thread won’t make progress, because this is true for all correct solutions 
to the critical section problem. 
Some of you pointed out that the solution uses busy waiting. This certainly reduces its 
efficiency, which is a desirable property for a solution to the critical section problem. 
However, spinning is now always less efficient than blocking; otherwise, there would be no 
use for spinlocks. I gave 3 pts partial credit for this answer. 

 
b) (10 pts) The Linux kernel, which is a multiprocessor kernel, provides the 

following function (actually implemented as a macro): 
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void spin_lock_irqsave(spinlock_t *lock, unsigned long flags); 
 

This function disables interrupts on the current processor, remembering 
the old interrupt state in the ‘flags’ variable, then acquires the spinlock 
‘lock.’ 

i. (4 pts) Why does Linux provide a function that combines disabling 
interrupts and taking a spinlock? Explain when a kernel developer 
would use this function! 

 
To safely access data structures that are shared between an interrupt 
handler and a thread, a thread must exclude both threads running on 
other CPUs, other threads running on the same CPU, and it must delay 
the execution of interrupt handlers. Taking a spinlock excludes threads on 
other CPUs, and disabling interrupts excludes interrupt handlers on the 
same CPU.  (Note that interrupt handlers on other CPUs are excluded 
because they must attempt to acquire the same spinlock.) This is such a 
common task that the kernel developers decided to provide a convenience 
function for it. 
 
Some of you pointed out that when acquiring a spinlock, one must also disable preemption 
(or else a thread on the current CPU might end up uselessly spinning until its time slice 
expires, or may lock up the entire system if strict priority scheduling is used). It turns out 
that Linux disables (e.g., postpones) preemption-related context switches even in the 
“normal” spin_lock() function, without, however, disabling all interrupts as 
spin_lock_irqsave() does. Since I didn’t expect you to know this detail, and since I didn’t 
point it out in the question, I accepted this answer for full credit as well. 

 
ii. (3 pts) The Linux kernel contains a debugging version of spinlocks 

which kernel developers can use to track down problems. This 
debugging version prints the message “BUG: spinlock lockup on 
CPU#n” if a spinlock cannot be acquired after about 1 second of 
spinning. 
Explain what is meant by “spinlock lockup” and why this debugging 
message suggests that this is (likely) a “bug!”  

 
Spinlocks must only be held for short periods of time. If a spinlock cannot 
be acquired for over 1 second, it means that the holder is holding it for an 
extended period of time. That would indicate a bug. 
 
Some of you suggested that the lockup may be due to an attempt to recursively acquire 
the spinlock by the thread holding the spinlock. I accepted this answer as well, even 
though the Linux debugging code easily detects this case and flags such recursive 
attempts without actually spinning (since it knows it won’t ever be able to acquire the lock). 
For full credit, you needed to have mentioned that spinlocks, by design, should only be 
held for short periods of time. Simply stating that the lock apparently wasn’t released is not 
sufficient - if the lock were blocking, having to wait 1 second would not be an issue and in 
fact is not uncommon. 
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iii. (3 pts) What concrete mistake could have led to such a bug? 

 
For instance, the thread holding the spinlock may have called a blocking 
function (such as timer_sleep()) that put the spinlock holding thread into 
the BLOCKED state. 

 
c) (8 pts) Lock Metering. Lock Metering tools such as SGI’s “lockstat” suite of 

tools allow to you collect statistics about Linux kernel locks. Among other 
information, they display how often attempts to acquire a lock were 
immediately successful vs. how often they required spinning (or led to 
blocking). 
 
Suppose after using this tool you find that a particular lock is almost 
always held when a thread attempts to acquire it.  
 

i. (4 pts) Explain how such contention can adversely impact the 
performance of a computer system!  

 
If a thread attempting to acquire a lock fails to do so most of the time, then 
this thread must block; during this time, it cannot use the CPU. As a result, 
CPU utilization is low and CPU capacity may be wasted. Moreover, since 
blocking, unblocking, and scheduling the thread requires at least 2 context 
switches and 2 scheduler calls, additional overhead is being paid which 
reduces the amount of CPU time available for applications to perform 
useful work that is not related to synchronization. 

 
For full credit, naming one adverse impact was sufficient. 

 
ii. (4 pts) What approach would you propose to address this problem? 

 
Several approaches are possible. First, examine if the lock is needed or if 
the data being protected can be partitioned or does not need to be shared. 
Second, if it does, consider using finer-grained locking. Examine whether 
the variables protected by this thread are always accessed together and if 
not, use different locks. Finally, make sure that the lock is held only for the 
time period in which it is absolutely necessary. 
 
For full credit, naming a single approach was sufficient. 
Some suggested that disabling interrupts should be used instead, which is not a good idea 
for two reasons: first, it would only work on a uniprocessor (which Linux isn’t), and second, 
it would only work if the thread didn’t block inside the critical section (which doesn’t always 
hold true). 
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3. Semaphores (26 pts) 
a) (18 pts) Consider the following “roller coaster” problem (taken from Greg 

Andrews’s book on Concurrent Programming): 
 

Suppose there are n passenger threads and a car thread. The 
passengers repeatedly wait to take rides in the car, which can hold 
C passengers, where C < n. The car can go around the tracks only 
when it is full. The following rules apply: 
 
• Passengers should invoke board() and unboard(). 
• The car should invoke load(), run() and unload(). 
• Passengers cannot call board() until the car has invoked load() 
• The car cannot depart until C passengers have boarded. 
• Passengers cannot unboard() until the car has invoked unload(). 
 
Your solution should use only semaphores for synchronization and (if 
needed) integer variables. Introduce variables as needed and show the 
code for the “car” thread and each “passenger” thread. You may use 
short-hand notation such as “semaphore s(0)” to declare a semaphore 
with an initial value of 0.  
 
For brevity of notation, we assume that a semaphore’s down() and up() 
operations takes an integer argument K, and that sema_up(K) is 
equivalent to calling sema_up() K times and that calling sema_down(K) is 
equivalent to calling sema_down() K times. 
 
Declarations: 
 semaphore mayBoard(0); 

semaphore allAboard(0); 
semaphore mayUnboard(0); 
semaphore allAshore(0); 

 
Car thread: 

while (1) { 
   load(); 
   mayBoard.up(C);    // signal C passengers that they may board 
   allAboard.down(C);  // wait until all passengers have boarded 
             run(); 
             unload(); 
             mayUnboard.up(C);  // signal C passengers to unboard 
             allAshore.down(C);   // wait until all passengers have unboarded 

  } 
  
Passenger thread: 
 while (1) { 
   mayBoard.down(); 
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   board(); 
             allAboard.up(); 
             // ride 
             mayUnboard.down(); 
             unboard(); 
             allAshore.up(); 
 } 
 
Common mistakes included not treating the semaphore as an abstract datatype and 
attempting to access its ‘value’ field directly. Semaphores provide only up and down 
operations, their value cannot be read. 
 

b) (8 pts) In project 1, you implemented priority inheritance for mutexes, but not 
for semaphores. Would implementing priority inheritance for general, counting 
semaphores make sense? Justify your answer! 

 
In general, it does not make sense. If a high-priority thread blocks while 
attempting to down a semaphore, we do not know which thread should inherit 
its priority, because we cannot easily predict which thread will signal (“up”) 
this semaphore. Unlike locks, semaphores do not have a notion of ownership. 
 
It makes sense only if the semaphore is used to represent a resource – in this case, a thread 
blocking on sema_down() could donate to the last thread that successfully downed the 
semaphore, which would need to be remembered. That would be, in essence, what you did in 
Project 1 for locks. We gave partial credit for this answer. 

 

4. Condition Variables and Monitors (24 pts) 
 
a) (9 pts) In project 0, your memory allocator’s mem_alloc() function returned 

NULL if it could not satisfy an allocation request. In this question, you are 
asked to extend your allocator such that a thread that attempts to allocate 
memory when there is no sufficient memory is instead blocked until a free 
block of sufficient size becomes available. If a block of memory is freed, all 
allocation requests that could subsequently be satisfied should be satisfied 
without undue delay. 

 
Your solution should use 1 condition variable (in addition to the 
pthread_mutex you are using to protect the free list). It should not be using 
busy-waiting. 
 

pthread_cond_t alloccond; 
pthread_mutex_t alloclock; 
 
void *mem_alloc(size_t length)  
{ 
    pthread_mutex_lock(&alloclock); 
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    while (!have_free_block_of_size(length)) 
        pthread_cond_wait(&alloccond, &alloclock); 
     
    // allocate free block 
    … 
    pthread_mutex_unlock(&alloclock); 
} 
 
void mem_free(void *ptr)  
{ 
    pthread_mutex_lock(&alloclock); 
     
    // put block on free list and coalesce 
    … 
    pthread_cond_broadcast(&alloccond); 
    pthread_mutex_unlock(&alloclock); 
} 
 
   
Note that the question asked that you use a condition variable, not reimplement one via 
thread_block/thread_unblock. Common mistakes included using ‘if’ instead of ‘while’ and 
using pthread_cond_signal instead of pthread_cond_broadcast. Your solution needed to 
show clearly where the pthread_cond_* operations are invoked. 
Also, notice that unlocking and reacquiring the monitor lock is done inside 
pthread_cond_wait(), you must not code ‘pthread_mutex_unlock(), pthread_cond_wait(), 
pthread_mutex_lock()’. 
   

b) (3 pts) Discuss the efficiency of your solution, given the restriction that only 1 
condition variable may be used. 

  
To ensure that any blocked thread whose allocation request could be satisfied 
by a freed block can return from mem_alloc(), we have to use 
pthread_cond_broadcast() to wake up all waiting threads. This may lead to a 
“thundering herd” phenomenon in which many threads are being woken up, 
but only one (or a small number of them) can make progress before memory 
is again exhausted. More efficient solutions would require a targeted signaling 
which requires multiple condition variables. 

 
c) (6 pts) Java and C# provide integrated support for monitor-style 

synchronization in which every Java or C# object can be used as both a 
mutex and a condition variable. By comparison, C API such as POSIX 
threads do not combine mutexes and condition variables; the programmer is 
responsible for using them in the style of a monitor. Compare these two 
approaches to each other! Discuss 1 advantage and 1 disadvantage of the 
Java/C# approach when compared to the C approach! 

 
i. (3 pts) Advantage of Java/C#’s approach:  

 
Two advantages include: 
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• The association between protected variables and monitors is clear. 
Private fields are protected by synchronized methods. 

• The association between the monitor lock and the condition variable is 
clear. The runtime system can check that the correct lock is held when 
a condition variable is used (e.g., in Java, that the object on which 
wait() or notify() is invoked is the one used in the surrounding 
synchronized block – if not, Java throws an 
IllegalMonitorStateException) 

 
ii. (3 pts) Disadvantage of Java/C#’s approach (Hint: consider the 

implementation of the Reader/Writer problem discussed in class!) 
 

Two significant disadvantages include: 
• The approach allows for only 1 condition variable per monitor. As such, 

problems that require 2 condition variables, such as the Reader/Writer 
problem discussed in class, require rather complex solutions. 

• Either the overhead for all objects is increased, even for those that 
aren’t used as monitors, or the runtime system is more complex, 
requiring sophisticated optimizations to efficiently support using only 
some objects as monitors. 

 
I accepted other reasonable advantages and disadvantages for full or partial credit. Note, 
however, that the question asked for advantages of language-supported monitors vs. 
manually-arranged monitors as in C, so naming general advantages or disadvantages of 
monitors received less or no credit. 

 
d) (6 pts) In a classic 1978 paper on “The Duality of Operating Systems 

Structures,” Lauer and Needham discuss the concept of monitors and 
observe: 

 
A process may WAIT anywhere within the ENTRY procedure or any other monitor procedure called by it, not 
just at the beginning as we have suggested in the canonical style. However, this is not without its 
disadvantages. [ … ] In this sense, the WAIT statement is almost as ill-structured as the notorious 'go to' 
statement. Perhaps, it should be confined to, say, the entry and exit points of an ENTRY procedure for more 
clarity. 
 
(In this quote, an “ENTRY” procedure is one that threads use to enter the monitor 
– such as a public synchronized method of a Java object. The term “processes” 
is used instead of “threads”). 
 
Why do Lauer and Needham recommend restricting the use of “WAIT” to the 
entry and exit points of a monitor procedure? 
 
The full quote reads like so: 
 
A process may WAIT anywhere within the ENTRY procedure or any other monitor procedure called by it, not 
just at the beginning as we have suggested in the canonical style. However, this is not without its 
disadvantages. The procedure which WAITS must ensure that the monitor invariant is true, even 
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though it might be deep inside an inner block of an inner procedure and may have captured all sorts 
of monitor information and temporary results in its local variables, results which could easily be 
invalidated by another process entering the monitor. In this sense, the WAIT statement is almost as ill-
structured as the notorious 'go to' statement. Perhaps, it should be confined to, say, the entry and exit points 
of an ENTRY procedure for more clarity. 
 
What Lauer and Needham point out is that whenever a thread calls WAIT(), the 
thread will leave the monitor, and when it reenters the monitor, other threads may 
have changed the monitor’s state. We saw a taste of that in class when 
discussing the case of 2 consumers and 1 producer in the producer/consumer 
problem (and that was even while following L&N’s “canonical style.”) 
 
Some of you claimed that calling WAIT, which releases the lock, does not guarantee mutual 
exclusion – that’s not the case since the thread must reacquire the lock before reentering. Even 
when WAIT is used, only one thread can be in the monitor, and WAIT must release the lock by 
design to allow other threads to enter. Also, WAIT is a blocking call that gives up the CPU until a 
SIGNAL is done; no busy waiting is involved. 


