Chapter 4

!'_ Computer Organization

Program Specification

int

Q.

Source

a, b, c, d;
Assembly Language

= b + c; ; Code for a = b + c

- a - 100; load R3,Db
load R4, c
add R3, R4
store R3, a

; Code for d = a - 100

load R4,=100
subtract R3,R4
store R3,d

CS 3204 - Arthur

Machine Language

Assembly Language

; Code for a = b + c
load R3,Db .
1oad R4, C Machine LLanguage
add R3, R4 10111001001100..1
store R3, a 10111001010000...0

10100111001100...0

: Code for d = a - 100 10111010001100...1
load R4,=100 10111001010000...0
subtract R3,R4 10100110001100..0
store R3, d 10111001101100..1

CS 3204 - Arthur

Von Neumann Concept

Stored program concept

General purpose computational device driven by
internally stored program

Data and instructions look same i.e. binary

Operation being executed determined by HOW we
look at the sequence of bits

Fetch

Decode } View bits as instruction

Execute

Ny

Data might be fetched as a result of execution

CS 3204 - Arthur 4

Von Neumann Architecture

CPU
= ALU
= Control Unit

I/O Buses
Memory Unit
Devices

The von Neumann Machine Architecture

Central Processing Unit (CPU)

i ic-Logical Unit -
Arithmetic-Logical Uni Cortral Rt

EEEaEE s
75 i AddressBas LRI T)

Data Bus

Device Controller

Primary Memory Unit
and

{Executable Memaory) .
Device

CS 3204 - Arthur

Von Neumann Machine Architecture

CPU = ALU + Cntrl Unit

ALU EIEOTTEVE— . Cntrl Unit
The von Neumann Machine Architecture
-\ - fetch
= Functional Unit Central Processing Unit (CPU)

. L > - decode
+ In§truct|9n set { Arithmetic-Logical Unit Control- Unit - execute
+ Arithmetic & Logic " ALU

- _Reqisters

[t =) R EEEE
+ Intermediate storage 5 5 Ll Al Addeess BES T gl L T

Data Bus

[Address Bus / Data Bus wires
over which Instr / data is
Buses | transferred from memory to ALU

| Von Neumann Bottleneck

CS 3204 - Arthur 6

CPU: ALU Component

FIGURE 4.3
A Generic Arithmetical-logical Unit

Right Operand

Left Operand
i
R1

R2

General RﬂgiStE!’S FunctionlUnit Status Registers

Result

= Assumes instruction format: OP code, LHO, RHO

= Instruction / data fetched & placed in register
» Instruction / data retrieved by functional unit & executed
= Results placed back in registers

= Control Unit sequences the operations

CS 3204 - Arthur

Program Specification (revisited)

Source
int a, b, ¢, d;

o Assembly Language
a=>b + c; ; Code for a = b + c
d =a - 100; load R3,b

load R4, c
add R3, R4
store R3, a

; Code for d = a — 100

load R4,=100
subtract R3,R4
store R3,d

CS 3204 - Arthur

CPU: Control Unit Component

HE¥ Progran_w Count_er
The PC, IR, and Memory IR => Instruction Register

[

Fetch Unit

Pe 3050

load R3, b 3046
load R4, c 3050
add R3,R4 | 3054
store R3, a 3058

Von Neumann
Execution Cycle <

Decode Unit

IR load R4, c

Execute Unit

Control Unit Primary Memaory

= Fetch Unit

» Get instruction at location pointed to by PC and place in IR
= Decode Unit

= Determine which instruction & signal hardware that implements it
s EXxecute Unit

= Hardware for instruction execution (could cause more data fetches)

CS 3204 - Arthur 9

Fetch — Execute cycle

Fetch

The Fetch-Execute Cycle

PC = <machine start address>;

IR = memory [PC] ;

haltFlag = CLEAR;

while (haltFlag not SET during execution) {
execute (IR); Decode(IR)
PC = PC T 1;
{IR = memory [PC] ;

¥

CS 3204 - Arthur 10

OS boot-up...

= How does the system boot up ?

= Bootstrap loader
= OS
= Application

CS 3204 - Arthur

11

Bootstrapping

— Bootstrap loader (“boot sector”)

BIOS loader

Fetch Unit

Decode Unit

Execute Unit

[}

CS 3204 - Arthur

0x0000100
0x0001000

Primary Memory

12

Bootstrapping

V\?\ ______________________ BOOtStfap loader (“b()()t SeCtOI'”)
7 =0
0 BIOS loader| 0x0000100
0x0001000

Fetch Unit

Decode Unit

Execute Unit

[}

LLoader

CS 3204 - Arthur

0x0008000

Primary Memory

13

Bootstrapping

— Bootstrap loader (“boot sector”)

LT @ |
@) BIOS loader| 0x0000100
0x0001000
0x0008000
Fetch Unit @ Loader | O
0x000AO000

Decode Unit

i Primary Memory
Execute Unit

Ll

CS 3204 - Arthur 14

A Bootstrap Loader

The power-up sequence
FIXED_LOC

load PC,

4////////

Address of BS Loader

Where FIXED_LOC addresses the bootstrap loader (in ROM).

The bootstrap loader has the form:

load R1,
load R2,
read R1,

store RI1,

loop:

incr R1
bleg R1,

br FIXED_DEST <\\\\\\\\\\\\\\

=0)

= LENGTH_OF_TARGET

FIXED_DISK_ADDRESS
[FIXED_DEST, R1]

R2, loop)

CS 3204 - Arthur

Fetch
Reads . Decode
OS in

Execute

Branches to OS

15

Memory Unit

Memory
Unit

FIGURE 4.2

The von Neumann Machine Architecture

Central Processing Unit (CPU)

Arithmetic-Logical Unit

Control Unit

[e Tl [z 2 sretn|
|| AddressBus _ }

Device Controller

Primary Memory Unit
and

{(Executable Memaory)

Device

CS 3204 - Arthur

16

Memory Unit

= Memory Unit contains

Memory

= Instructions & Data
MAR (Memory Address Register)
MDR (Memory Data register)
CMD (Command Register)
Get instruction at location pointed to by PC and place

=ala Blus ‘ ‘

Device Controller
and

Primary Memory Unit
{(Executable Memaory)

Device

CS 3204 - Arthur

in IR

17

Memory Access

= Read from Memory TR
The Memory Organization
= MAR € MemAddr
« CMD €& ‘Read oP’ (from IR) 4—K bits —P|
= Execute MAR

MDR €& Mem[MAR]

MDR

= Write to Memory il e \v

= MAR €& MemAddr 1232 98765
= CMD € ‘Write op’ (from IR)
= Execute

Mem[MAR] € MDR n-1

CS 3204 - Arthur 18

Device & Device Controller

E 42—]
von Neumann Machine Architecture
e Device &
Central Processing Unit (CPU) N
Device
Arithmetic-Logical Unit ey Controller
In OS
[] R
T 5 /

Device Driver

Data Busg /\

Device Controller
and

Device Controller

Primary Memory Unit
{(Executable Memaory)

Device

Device

/ Interfaces

CS 3204 - Arthur 19

Device Controller-Software Relationship

The Device-Controller-Software Relationship

Bus

Application Software

Device

CS 3204 - Arthur

Device Controller I /

Device driver

PCI

Standard Interface

SCSI

20

Device Controller Interface

Driver interrogated these
to check status of device

The Device Controller Interface

Busy Done | Error Code

Driver places
command if
status “"Done”

Interface to driver

‘ Bus Connections ’

T

oatait |

Device Controller

CS 3204 - Arthur 21

Device Controller

= Device controller is a processor and allows 2 parts of
the process to proceed concurrently

Program Controller

|

write Prints info

/\

CS 3204 - Arthur 22

Device Driver Interface

Interface presented by
Driver to Application
program thru OS

OS could provide higher level
operations to application than the
one Driver presents to it

S .
write(...)
_g
Terminal Printer Disk
Controller/Driver Driver Driver Driver
Interface ——E
Terminal Printer Disk
_ Controller Controller Controller
Controller/Device
Interface re Gt
Terminal Printer Disk

CS 3204 - Arthur 23

How do interrupts factor in ?

Scenario (1)

= Program:
while device_flag busy {}

=> Busy wait - consumes CPU cycles

Scenario (2)

= Program:
while (Flag !'= write) {
sleep(X)

}

=>If write available while program sleeping - inefficient

CS 3204 - Arthur

24

How do interrupts factor in ? ...

= Scenario (3)

m Program: Driver:

issues “write” = Suspend program until
write is completed,

then program is
unsuspended

This is Interrupt-driven

CS 3204 - Arthur

25

Interrupts Driven Service Request

Process is suspended only if driver/controller/device
cannot service request

If a process is suspended, then, when the suspended
process’ service request can be honored

= Device interrupts CPU

=« OS takes over

= OS examines interrupts

= OS un-suspends the process

Interrupts
= Eliminate busy wait
= Minimizes idle time

CS 3204 - Arthur 26

Interrupts ...

Interrupt Handler in OS: disables interrupts

Interrupt processed

enables interrupts

What if multiple devices (or 2" device) sends
interrupt while the OS is handling prior interrupt ?

If priority of 2nd
interrupt higher than Resumption of

1st then 1st interrupt ond jnterrupt handled handling 1st
suspended I::> P ::> interrupt

CS 3204 - Arthur 27

Control Unit with Interrupt (H/W)

PC = <machine start address>;
IR = memory[PC];
haltFlag = CLEAR;
while (haltFlag not SET) {
execute (IR) ;
PC = PC + sizeof (INSTRUCT) ;
IR = memory[PC];
1f (InterruptRequest) {
memory [0] = PC;
PC = memory[1]

s

memory[1] contains the address of the interrupt handler

CS 3204 - Arthur

Interrupt Handler (Software)

interruptHandler () {
‘ saveProcessorState () ;
for (1=0; i1<NumberOfDevices; 1i++)
1f (device[1i] .done) goto deviceHandler (1) ;
/* something wrong if we get to here .. */

deviceHandler (int i) {
finishOperation();
returnToScheduler () ;

CS 3204 - Arthur

29

A Race Condition

saveProcessorState () {
for (1=0; 1<NumberOfRegilisters; 1++)
memory [K+1i] = R[1];
for (1=0; i<NumberOfStatusRegisters; 1i++)
memory [K+NumberOfRegisters+i] = StatusRegister[i];
}
PC = <machine start address>;

IR = memory[PC];
haltFlag = CLEAR;
while (haltFlag not SET) {
execute (IR) ;
PC = PC + sizeof (INSTRUCT);
IR = memory[PC];
1f (InterruptRequest && InterruptEnabled) {
disablelInterupts () ;
memory [0] = PC;
PC = memory([1]

} -
’ CS 3204 - Arthur 30

Revisiting the t rap Instruction (H/W)

executeTrap (argument) {
setMode (supervisor) ;
switch (argument) {
case 1: PC memory [1001]; // Trap handler 1
case 2: PC memory [1002]; // Trap handler 2

case n: PC memory [1000+n];// Trap handler n

}s

= [The trap instruction dispatches a trap
handler routine atomically

= Trap handler performs desired processing
= A trap is a software interrupt”

CS 3204 - Arthur 31

Requesting Service from OS

= Kernel functions are invoked by “trap”

\ .

Interrupt
Handler

= System call
= Process traps to OS Interrupt Handler
= Supervisor mode set
= Desired function executed
=« User mode set
= Returns to application

CS 3204 - Arthur 32

Requesting Svc: System Call

Procedure Call and Message Passing

System Call

CS 3204 - Arthur

33

Steps in making a system call

Taken from Modern Operating Systems, 2"@ Ed, Tanenbaum, 2001

Address
OxFFFFFFFF _
Return to caller .
T ho k I Library
rap to the kerne procedure
5| Put code for read in register read
10
4
U #
RH SREEE < Increment SP 11
~ Call read
3| Push fd User program
2| Push &buffer calling read
1| Push nbytes
6 9
-
- * 7
Kernel space . 7 8 [Sys call
(Operating system) < Lispaieh - “| handler
-
0

There are 11 steps in making the system call read (fd, buffer, nbytes)

CS 3204 - Arthur 34

