
1

Chapter 2

 Using the Operating system

Fall 1999 : CS 3204 - Arthur 2

Resource Descriptors

n The OS implements Abstraction of each of this
n Unit of Computation is a ‘process’
n Unit of information storage is a ‘file

n For each resource abstraction (file, memory,
processor), OS maintains a resource descriptor

n Resource descriptor:
n Identify resources
n Current state
n What process it is associated with, if it is allocated
n Number and identity of available units

2

Fall 1999 : CS 3204 - Arthur 3

Resource Descriptors…

n File descriptor:
n File name
n File type (Sequential, Indexed, …)
n Owner
n State (Open, Closed)
n Extents (mapping to the physical storage)

n Process descriptor
n Object program (Program text)
n Data segment
n Process Status Word (PSW) – executing, waiting, ready
n Resources acquired

Fall 1999 : CS 3204 - Arthur 4

Process & Process Descriptor

Interface provided by OS

Files, etc.
PC, status,

 exec time priority

Code

Static variables

Contents of a descriptor maps directly to the Abstract Machine
provided by the OS

3

Fall 1999 : CS 3204 - Arthur 5

One Program / Multiple Instantiations

Distinct
execution paths

=> PC?

Note:

Each Process has its
own descriptor
- text (shared), data…

Only one process
active at a time
(context switching)

Fall 1999 : CS 3204 - Arthur 6

Process

n 3 units of computations:
n Process
n Thread
n Object

n Process: ‘heavy-weight’ process
n OS overhead to create and maintain descriptor is expensive

n Thread: “light-weight” process
n OS maintains minimal internal state information

n Objects: ‘heavy-weight’ process
n Instantiation of a class

4

Fall 1999 : CS 3204 - Arthur 7

UNIX Processes
• Dynamically allocated variables

• Runtime stack
Tape drive,

memory

Fall 1999 : CS 3204 - Arthur 8

Thread

n Thread: light-weight process
n OS maintains minimal internal state information

n Usually instantiated from a process

n Each thread has its OWN unique descriptor
n Data, Thread Status Word (TSW)

n SHARES with the parent process (and other threads)
n Program text
n Resources
n Parent process data segment

5

Fall 1999 : CS 3204 - Arthur 9

Thread …

Unique for each thread

 Minimal info

 => Light-weight

Shared components

Only 1 copy of
descriptor in OS

Each thread is
sharing/executing the
EXACT same code

Fall 1999 : CS 3204 - Arthur 10

Threads… example

Single resource

Manipulated by
individual threads

Each thread manipulates part of
the physical screen, i.e. a window

Multiple lightweight processes; one resource allocated
=> Only one physical resource has to be
 maintained by OS

=> Less OS overhead, better response time

Threads share access to physical screen
- Screen resource allocated to heavyweight process

6

Fall 1999 : CS 3204 - Arthur 11

Objects

n Objects:
n Derived from SIMULA ’67
n Defined by classes
n Autonomous

n Classes
n Abstract Data Types (ADT)
n Private variables

n An instantiation of a class is an Object

Fall 1999 : CS 3204 - Arthur 12

Objects

n Objects are heavy-weight processes
n have full descriptors

n Object communicate via Message passing

n OOP:
n Appeals to intuition
n Only recently viable

n Overhead of instantiation and communication

7

Fall 1999 : CS 3204 - Arthur 13

Computational Environment

n When OS is started up
n Machine abstraction created

n Hides hardware from User and Application

n Instantiates processes that serve as the user interface or “Shell”
n Shell (UI) instantiates user processes

n Consider UNIX:

n What are the advantages & disadvantages of so many processes
just to execute a program ?

UNIX getty shell user process

Fall 1999 : CS 3204 - Arthur 14

Advantages & Disadvantages

n Advantages…
Each process (UNIX, getty, shell, …) has its own ‘protected’ execution

environment

n If child process fails from fatal errors, no (minimal) impact on
parent process

n Disadvantages…
OS overhead in

n Maintaining process status
n Context switching

8

Fall 1999 : CS 3204 - Arthur 15

Process Creation – UNIX fork()

n Creates a child process that is a ‘Thread’

n Child process is duplicate (initially) of the parent process –
except for the process id

n Shares access to all resources allocated at the time of
instantiation and Text

n Has duplicate copy of data space BUT is its own copy and it can
modify only its own copy

If a child Process requests / receives a resource,
does the parent or other children have access to
it ?

Fall 1999 : CS 3204 - Arthur 16

Process creation - fork()… example

int pidValue;

..

pidValue = fork(); /* creates a child process */

If(pidValue == 0) {

/* pidValue is ZERO for child, nonzero for parent */

/* The child executes this code concurrently with Parent */

childsPlay(..); /* A locally-liked procedure */

exit(0); /* Terminate the child */

}

/* The Parent executes this code concurrently with the child */

..

wait(..); /* Parent waits for Child’s to terminate */

UNIX process creation : fork() facility

9

Fall 1999 : CS 3204 - Arthur 17

Process creation – Unix fork()…

n Child/Parent code executed based on the pid value in “local”
data space
n For parent process, pid value of the parent pid
n For child process, pid value = 0

n pidvalue returned to parent process is non-Zero

n Therefore, fork() creates a new LW process

fork()
Parent process (HW)

Child process (LW)
Initial process

Fall 1999 : CS 3204 - Arthur 18

Process Creation – Unix exec()

n Turns LW process into autonomous HW process

n fork()
n Creates new process

n exec()
n Brings in new program to be executed by that process

n New text, data, stack, resources, PSW, etc.
BUT using same (expanded) process descriptor entries

In effect, the “exec’ed” code overlays “exec’ing” code

10

Fall 1999 : CS 3204 - Arthur 19

Process creation – exec()… example
int pid;

..

/* Setup the argv array for the child */

..

if((pid = fork()) == 0) { /* Create a child */

/* The child process executes changes to its own program */

execve(new_program.out , argv , 0);
/*Only return from an execve call if it fails */

printf(“Error in execve”);

exit(0); /* Terminate the child */

}

/* Parent executes this code */

..

wait(..); /* Parent waits for Child’s to terminate */

UNIX process creation: exec() facility

