
Sorting Algorithms

 Data Structures & Algorithms

1

CS@VT ©2000-2009 McQuain

Sorting Considerations

We consider sorting a list of records, either into ascending or descending order, based

upon the value of some field of the record we will call the sort key.

The list may be contiguous and randomly accessible (e.g., an array), or it may be

dispersed and only sequentially accessible (e.g., a linked list). The same logic applies

in both cases, although implementation details will differ.

When analyzing the performance of various sorting algorithms we will generally

consider two factors:

 - the number of sort key comparisons that are required

 - the number of times records in the list must be moved

Both worst-case and average-case performance is significant.

Sorting Algorithms

 Data Structures & Algorithms

2

CS@VT ©2000-2009 McQuain

Internal or External?

In an internal sort, the list of records is small enough to be maintained entirely in

physical memory for the duration of the sort.

In an external sort, the list of records will not fit entirely into physical memory at once.

In that case, the records are kept in disk files and only a selection of them are resident

in physical memory at any given time.

We will consider only internal sorting at this time.

Sorting Algorithms

 Data Structures & Algorithms

3

CS@VT ©2000-2009 McQuain

Stable or Not?

A sorting algorithm is stable if it maintains the relative ordering of records that have equal

keys:

(17, 3)

(8, 24)

(9, 7)

(8, 13)

(8, 91)

(17, 41)

(8, 24)

(8, 13)

(8, 91)

(9, 7)

(17, 3)

(17, 41)

(8, 91)

(8, 24)

(8, 13)

(9, 7)

(17, 41)

(17, 3)

Sorting Algorithms

 Data Structures & Algorithms

4

CS@VT ©2000-2009 McQuain

Insertion Sort

Insertion Sort:

14 17 21 34 47 19 71 22 29 41 32 8

14 17 21 34 47 71 22 29 41 32 8

sorted part unsorted part

next element to place

19

shift sorted tail

copy element

place element

Insertion sort closely resembles the insertion function for a sorted list.

For a contiguous list, the primary costs are the comparisons to determine which part of

the sorted portion must be shifted, and the assignments needed to accomplish that

shifting of the sorted tail.

unsorted part

Sorting Algorithms

 Data Structures & Algorithms

5

CS@VT ©2000-2009 McQuain

Insertion Sort Implementation

public void insertionSort(T[] A) {

 int j;

 for (int p = 1; p < A.length; p++) {

 T temp = A[p];

 for (j = p; j > 0 && temp.compareTo(A[j-1]) < 0; j--)

 A[j] = A[j-1];

 A[j] = temp;

 }

}

Origin: ancient

Stable? Y

Sorting Algorithms

 Data Structures & Algorithms

6

CS@VT ©2000-2009 McQuain

Improving Insertion Sort

Insertion sort is most efficient when the initial position of each list element is fairly

close to its final position (take another look at the analysis).

Consider:
10 8 6 20 4 3 22 1 0 15 16

10 3 16

8 22

6 1

20 0

4 15

3 10 16

8 22

1 6

0 20

4 15

Pick a step size (5

here) and logically

break the list into

parts.

Sort the elements

in each part.

Insertion Sort is

acceptable since

it's efficient on

short lists.

Sorting Algorithms

 Data Structures & Algorithms

7

CS@VT ©2000-2009 McQuain

Improving Insertion Sort

This gives us:

Now we pick a smaller increment, 3 here, and repeat the process:

3 8 1 0 4 10 22 6 20 15 16

3 0 22 15

8 4 6 16

1 10 20

Partition list:

Sort the parts: 0 3 15 22

4 6 8 16

1 10 20

Giving: 0 4 1 3 6 10 15 8 20 22 16

Finally repeat the

process with step

size 1:

0 1 3 4 6 8 10 15 16 20 22

Sorting Algorithms

 Data Structures & Algorithms

8

CS@VT ©2000-2009 McQuain

Why Is This Better?

Well…

 - Until the last pass, the sublists that are being sorted are much shorter than the

entire list — sorting two lists of length 1000 is faster than sorting one list of

length 2000 .

 - Since the sublists exhibit mixing as we change the step size, the effect of the

early passes is to move each element closer to its final position in the fully

sorted list.

 - In the last pass, most of the elements are probably not too far from their final

positions, and that's one situation where Insertion Sort is quite efficient.

QTP: Suppose than a sorting algorithm is, on average,

(N2). Using that face, how would the expected time

to sort a list of length 50 compare to the time

required to sort a list of length 100?

Sorting Algorithms

 Data Structures & Algorithms

9

CS@VT ©2000-2009 McQuain

Shell Sort

The process just shown is known as Shell Sort (after its originator: Donald Shell, 1959),

and may be summed up as follows:

 - partition the list into discontiguous sublists whose elements are some step

size, h, apart.

 - sort each sublist by applying Insertion Sort (or …)

 - decrease the value of h and repeat the first two steps, stopping after a pass

in which h is 1.

The end result will be a sorted list because the final pass (with h being 1) is simply an

application of Insertion Sort to the entire list.

What is an optimal sequence of values for the step size h? No one knows…

Origin: 1959

Stable? N

Sorting Algorithms

 Data Structures & Algorithms

10

CS@VT ©2000-2009 McQuain

Shell Sort Implementation

public void shellSort(T[] A) {

 int increment = A.length / 2;

 while (increment > 0) {

 for (int i = 0; i < A.length; i++) {

 int j = i;

 T temp = A[i];

 while ((j >= increment) &&

 (A[j-increment].compareTo(temp) > 0)) {

 A[j] = A[j - increment];

 j = j - increment;

 }

 A[j] = temp;

 }

 if (increment == 2)

 increment = 1;

 else

 increment = increment * 5 / 11;

 }

}

Sorting Algorithms

 Data Structures & Algorithms

11

CS@VT ©2000-2009 McQuain

Divide and Conquer Sorting

Shell Sort represents a "divide-and-conquer" approach to the problem.

That is, we break a large problem into smaller parts (which are presumably more

manageable), handle each part, and then somehow recombine the separate results to

achieve a final solution.

In Shell Sort, the recombination is achieved by decreasing the step size to 1, and

physically keeping the sublists within the original list structure. Note that Shell Sort is

better suited to a contiguous list than a linked list.

We will now consider a somewhat similar algorithm that retains the divide and conquer

strategy, but which is better suited to linked lists.

Sorting Algorithms

 Data Structures & Algorithms

12

CS@VT ©2000-2009 McQuain

Merge Sort

In Merge Sort, we chop the list into two (or more) sublists which are as nearly equal in

size as we can achieve, sort each sublist separately, and then carefully merge the

resulting sorted sublists to achieve a final sorting of the original list.

3 6 

1 7 

4 

2 Head 5 9 7 1

8 3 6

Merging two sorted lists into a single sorted list is relatively trivial:

S1 4

S2

L

Origin: J von Neumann 1945 (?)

Stable? Y

Sorting Algorithms

 Data Structures & Algorithms

13

CS@VT ©2000-2009 McQuain

Heap Sort

A list can be sorted by first building it into a heap, and then iteratively deleting the root

node from the heap until the heap is empty. If the deleted roots are stored in reverse

order in an array they will be sorted in ascending order (if a max heap is used).

public static void heapSort(Integer[] List, int Sz) {

 BinaryHeap<Integer> toSort = new BinaryHeap<Integer>(List, Sz);

 int Idx = Sz - 1;

 while (!toSort.isEmpty()) {

 List[Idx] = toSort.deleteMax();

 Idx--;

 }

}

Origin: JWJ Williams, 1964

Stable? Y

Sorting Algorithms

 Data Structures & Algorithms

14

CS@VT ©2000-2009 McQuain

QuickSort

QuickSort is conceptually similar to MergeSort in that it is a divide-and-conquer

approach, involving successive partitioning of the list to be sorted.

The differences lie in the manner in which the partitioning is done, and that the sublists

are maintained in proper relative order so no merging is required.

QuickSort is a naturally recursive algorithm, each step of which involves:

 - pick a pivot value for the current sublist

 - partition the sublist into two sublists, the left containing only values less than the

pivot value and the right containing only values greater than or equal to the pivot

value

 - recursively process each of the resulting sublists

As they say, the devil is in the details…

Origin: Hoare 1960

Stable? N

Sorting Algorithms

 Data Structures & Algorithms

15

CS@VT ©2000-2009 McQuain

Importance of the Pivot Value

The choice of the pivot value is crucial to the performance of QuickSort. Ideally, the

partitioning step produces two equal sublists, as here:

In the worst case, the partitioning step produces one empty sublist, as here:

Theoretically, the ideal pivot value is the median of the values in the sublist;

unfortunately, finding the median is too expensive to be practical here.

43 71 87 14 53 38 90 51 41

43 71 87 14 53 38 90 51 41

Sorting Algorithms

 Data Structures & Algorithms

16

CS@VT ©2000-2009 McQuain

Choosing the Pivot Value

 - take the value at some fixed position (first, middle-most, last, etc.)

 - take the median value among the first, last and middle-most values

 - find three distinct values and take the median of those

Commonly used alternatives to finding the median are:

The third does not guarantee good performance, but is the best of the listed strategies

since it is the only one that guarantees two nonempty sublists. (Of course, if you can’t

find three distinct values, this doesn’t work, but in that case the current sublist doesn’t

require any fancy sorting — a quick swap will finish it off efficiently.)

Each of the given strategies for finding the pivot is Θ(1) in comparisons.

QTP: under what conditions would choosing the first value

produce consistently terrible partitions?

Sorting Algorithms

 Data Structures & Algorithms

17

CS@VT ©2000-2009 McQuain

Partitioning a Sublist Efficiently

Since each iteration of QuickSort requires partitioning a sublist, this must be done

efficiently. Fortunately, there is a simple algorithm for partitioning a sublist of N

elements that is Θ(N) in comparisons and assignments:

template <typename T>

unsigned int Partition(T List[], unsigned int Lo, unsigned int Hi) {

 T Pivot;

 unsigned int Idx,

 LastPreceder;

 Swap(List[Lo], List[(Lo + Hi)/2]); // take middle-most element as Pivot

 Pivot = List[Lo]; // move it to the front of the list

 LastPreceder = Lo;

 for (Idx = Lo + 1; Idx <= Hi; Idx++) {

 if (List[Idx] < Pivot) {

 LastPreceder++;

 Swap(List[LastPreceder], List[Idx]);

 }

 }

 Swap(List[Lo], List[LastPreceder]);

 return LastPreceder;

}

Sorting Algorithms

 Data Structures & Algorithms

18

CS@VT ©2000-2009 McQuain

QuickSort Implementation

Assuming the pivot and partition function just described, the main QuickSort function is

quite trivial:

template <typename T>

void QuickSort(T List[], unsigned int Lo, unsigned int Hi) {

 QuickSortHelper(List, Lo, Hi);

}

template <typename T>

void QuickSortHelper(T List[], unsigned int Lo, unsigned int Hi) {

 unsigned int PivotIndex;

 if (Lo < Hi) {

 PivotIndex = Partition(List, Lo, Hi);

 QuickSortHelper(List, Lo, PivotIndex - 1); // recurse on lower part,

 QuickSortHelper(List, PivotIndex + 1, Hi); // then on higher part

 }

}

Sorting Algorithms

 Data Structures & Algorithms

19

CS@VT ©2000-2009 McQuain

QuickSort Improvements

QuickSort can be improved by

 - switching to a nonrecursive sort algorithm on sublists that are relatively short.

The common rule of thumb is to switch to insertion sort if the sublist contains

fewer than 10 elements.

 - eliminating the recursion altogether. However, the resulting implementation is

considerably more difficult to understand (and therefore to verify) than the

recursive version.

 - making a more careful choice of the pivot value than was done in the given

implementation.

 - improving the partition algorithm to reduce the number of swaps. It is possible to

reduce the number of swaps during partitioning to about 1/3 of those used by the

given implementation.

Sorting Algorithms

 Data Structures & Algorithms

20

CS@VT ©2000-2009 McQuain

Bin Sort

Assume we need to sort a list of integers in the range 0-99:

Given an integer array of dimension 100 (the bins) for storage, make a pass through the

list of integers, and place each into the bin that matches its value:

Bin[Souce[k]] = Source[k]

This will take one pass, requiring Θ(N) work, much better than N log(N).

Limitations of Bin Sort:

34 16 83 76 40 72 38 80 89 87

 - the number of bins is determined by the range of the values

 - only suitable for integer-like values

Sorting Algorithms

 Data Structures & Algorithms

21

CS@VT ©2000-2009 McQuain

LSD Radix Sort

Assume we need to sort a list of integers in the range 0-99:

Given an array of 10 linked lists (bins) for storage, make a pass through the list of

integers, and place each into the bin that matches its 1’s digit.

Then, make a second pass, taking each bin in order, and append each integer to the bin

that matches its 10’s digit.

34 16 83 76 40 72 38 80 89 87

 Bin

 0: 40 80

 1:

 2: 72

 3: 83

 4: 34

 5:

 6: 16 76

 7: 87

 8: 38

 9: 89

 Bin

 0:

 1: 16

 2:

 3: 34 38

 4: 40

 5:

 6:

 7: 72 76

 8: 80 83 87 89

 9:
Origin: Hollerith 1887 (?)

Stable? Y

Sorting Algorithms

 Data Structures & Algorithms

22

CS@VT ©2000-2009 McQuain

References

Williams JWJ. Algorithm 232 - Heapsort, 1964, Comm. ACM 7(6): 347–348.

Hoare, C. A. R. "Partition: Algorithm 63," "Quicksort: Algorithm 64," and "Find: Algorithm 65."

Comm. ACM 4(7), 321-322, 1961

http://en.wikipedia.org/wiki/Comm._ACM

