
Perfect Hash Fns

 Data Structures & Algorithms

1

CS@VT ©2000-2009 McQuain

Perfect Hash Functions

In most general applications, we cannot know exactly what set of key values will need

to be hashed until the hash function and table have been designed and put to use.

At that point, changing the hash function or changing the size of the table will be

extremely expensive since either would require re-hashing every key.

A perfect hash function is one that maps the set of actual key values to the table without

any collisions.

A minimal perfect hash function does so using a table that has only as many slots as

there are key values to be hashed.

If the set of keys IS known in advance, it is possible to construct a specialized hash

function that is perfect, perhaps even minimal perfect.

Algorithms for constructing perfect hash functions tend to be tedious, but a number are

known.

Perfect Hash Fns

 Data Structures & Algorithms

2

CS@VT ©2000-2009 McQuain

Cichelli’s Method

This is used primarily when it is necessary to hash a relatively small collection of keys,

such as the set of reserved words for a programming language.

The basic formula is:

h(S) = S.length() + g(S[0]) + g(S[S.length()-1])

where g() is constructed using Cichelli’s algorithm so that h() will return a different

hash value for each word in the set.

The algorithm has three phases:

 - computation of the letter frequencies in the words

 - ordering the words

 - searching

Perfect Hash Fns

 Data Structures & Algorithms

3

CS@VT ©2000-2009 McQuain

Cichelli’s Method

Suppose we need to hash the words in the list below:

calliope

clio

erato

euterpe

melpomene

polyhymnia

terpsichore

thalia

urania

Determine the frequency with which each first and last letter

occurs:

letter: e a c o t m p u

freq: 6 3 2 2 2 1 1 1

Score the words by summing the frequencies of their first and

last letters, and then sort them in that order:

calliope 8

clio 4

erato 8

euterpe 12

melpomene 7

polyhymnia 4

terpsichore 8

thalia 5

urania 4

euterpe

calliope

erato

terpsichore

melpomene

thalia

clio

polyhymnia

urania

Perfect Hash Fns

 Data Structures & Algorithms

4

CS@VT ©2000-2009 McQuain

Cichelli’s Method

Finally, consider the words in order and define g(x) for each possible first and last

letter in such a way that each of the words will have a distinct hash value:

word g_value assigned h(word) table slot

euterpe e-->0 7 7 ok

calliope c-->0 8 8 ok

erato o-->0 5 5 ok

terpsichore t-->0 11 2 ok

melpomene m-->0 9 0 ok

thalia a-->0 6 6 ok

clio none 4 4 ok

polyhymnia p-->0 10 1 ok

urania u-->0 6 6 reject

 u-->1 7 7 reject

 u-->2 8 8 reject

 u-->3 9 0 reject

 u-->4 10 1 reject

Perfect Hash Fns

 Data Structures & Algorithms

5

CS@VT ©2000-2009 McQuain

Cichelli’s Method

Cichelli’s method imposes a limit on the search at this point (we’re assuming it’s 5

steps), and so we back up to the previous word and redefine the mapping there:

word g_value assigned h(word) table slot

polyhymnia p-->0 10 1 reject

 p-->1 11 2 reject

 p-->2 12 3

urania u-->0 6 6 reject

 u-->1 7 7 reject

 u-->2 8 8 reject

 u-->3 9 0 reject

 u-->4 10 1 ok

So, if we define g() as determined above, then h() will be a minimal perfect hash

function on the given set of words.

The primary difficulty is the cost, because the search phase can degenerate to

exponential performance, and so it is only practical for small sets of words.

