You will submit your solution to this assignment to the Curator System (as HWO 4). Your solution must be either a plain text file (e.g., NotePad++) or a typed MS Word document; submissions in other formats will not be graded.

Credit will only be given if you show relevant work.

1. [30 points] Apply Dijkstra's SSAD algorithm to find the shortest distance from vertex a to every other vertex in the graph shown in Figure 1 below. For uniformity, when choosing which node to visit next, take them in increasing alphabetic order. You must show supporting work in the form of a table; see the course website for an acceptable format. You do not need to list the paths in your answer, just the minimum distances.

Note: the example in the course notes shows an undirected graph, but the algorithm applies to directed graphs as well, and in the obvious manner.

2. [30 points] Using a depth-first traversal, find a topological ordering of the nodes in the graph shown in Figure 2 below. For uniformity, when choosing which node to visit next, take them in increasing alphabetic order. You must show supporting work; see the course website for an acceptable format.

3. Suppose you are given a collection S of $N=2^{10}$ different, positive integers (which could cover a very large range of values). Explain whether each of the following search problems could be solved more efficiently if the elements in S were sorted in ascending order, describing (in words, not code) the most efficient algorithm for solving the problem. Do not consider the cost of sorting the values in S as part of the analysis.
a) [10 points] Determine whether there is some integer Z such that Z and $Z+1$ are both in S.
b) [10 points] Given a specific integer X, which may or may not be in S, determine whether there is an integer Z in S such that Z is a multiple of X.
c) [10 points] Given a specific integer X, which may or may not be in S, determine whether there are two values in S whose sum is X.
d) [10 points] Given a specific integer X, which may or may not be in S, determine whether there is an integer Z in S such that X equals $\left(Z / 10^{K}\right) \% 10^{M}$, for some nonnegative integers K and M.

Note: what this is saying is that the digits of Z contain the digits of X as a consecutive subsequence, like $X=421$ and $Z=97342164$.

