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1 Summation Formulas 

Let N > 0, let A, B, and C be constants, and let f and g be any functions.  Then: 
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2 Logarithms 

Let b be a real number, b > 0 and b  1.  Then, for any real number x > 0, the logarithm 

of x to base b is the power to which b must be raised to yield x.  That is: 

 x byx y

b    ifonly  and if  )(log

For example: 

642  because  6)64(log 6

2   

8/12  because  3)8/1(log 3

2    
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If the base is omitted, the standard convention in mathematics is that log base 10 is 

intended; in computer science the standard convention is that log base 2 is intended. 
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3 Logarithms 

Let a and b be real numbers, both positive and neither equal to 1.  Let x > 0 and y > 0 be 

real numbers. 
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4 Limit of a Function 

Definition: 

Let f(x) be a function with domain (a, b) and let a < c < b.  The limit of f(x) as x 

approaches c is L if, for every positive real number e, there is a positive real number d 

such that whenever |x-c| < d then |f(x) – L| < e. 

The definition being cumbersome, the following theorems on limits are useful.  We 

assume f(x) is a function with domain as described above and that K is a constant. 
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5 Limit of a Function 

Here assume f(x) and g(x) are functions with domain as described above and that K is a 

constant, and that both the following limits exist (and are finite): 
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6 Limit as x Approaches Infinity 

Definition: 

Let f(x) be a function with domain [0, ).  The limit of f(x) as x approaches  is L, 

where L is finite, if, for every positive real number e, there is a positive real number N 

such that whenever x > N then |f(x) – L| < e. 

The definition being cumbersome, the following theorems on limits are useful.  We 

assume f(x) is a function with domain [0, ) and that K is a constant. 
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7 Limit of a Rational Function 

Given a rational function the last two rules are sufficient if a little algebra is employed: 
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Divide by highest power of 

x from the denominator. 

Take limits term by term. 

Apply theorem C3. 
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8 Infinite Limits 

In some cases, the limit may be infinite.  Mathematically, this means that the limit does 

not exist. 
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9 l'Hôpital's Rule 

In some cases, the reduction trick shown for rational functions does not apply: 

In such cases, l'Hôpital's Rule is often useful.  If f(x) and g(x) are differentiable 

functions such that 
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10 l'Hôpital's Rule Examples 

Applying l'Hôpital's Rule: 
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11 Mathematical Induction 

Mathematical induction is a technique for proving that a statement is true for all 

integers in the range from N0 to , where N0 is typically 0 or 1. 

Let P(N) be a proposition regarding the integer N, and let S be the set of all 

integers k for which P(k) is true.  If 

 1) N0 is in S, and 

 2) whenever N is in S then N+1 is also in S, 

then S contains all integers in the range [N0, ). 

First (or Weak) Principle of Mathematical Induction 

To apply the PMI, we must first establish that a specific integer, N0, is in S 

(establishing the basis) and then we must establish that if a arbitrary integer, N  N0, is 

in S then its successor, N+1, is also in S. 
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12 Induction Example 

Theorem:  For all integers n  1, n2+n is a multiple of 2. 

proof:  Let S be the set of all integers for which n2+n is a multiple of 2. 

If n = 1, then n2+n = 2, which is obviously a multiple of 2.  This establishes the 

basis, that 1 is in S. 

Now suppose that some integer k  1 is an element of S.  Then k2+k is a multiple of 

2.  We need to show that k+1 is an element of S; in other words, we must show that 

(k+1)2+(k+1) is a multiple of 2.  Performing simple algebra: 

(k+1)2+(k+1) = (k2 + 2k + 1) + (k + 1) = k2 + 3k + 2 

Now we know k2+k is a multiple of 2, and the expression above can be grouped to 

show: 

(k+1)2+(k+1) = (k2 + k) + (2k + 2) = (k2 + k) + 2(k + 1) 

The last expression is the sum of two multiples of 2, so it's also a multiple of 2.  

Therefore, k+1 is an element of S. 

Therefore, by PMI, S contains all integers [1, ). 

 QED 
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13 Inadequacy of the First Form of Induction 

Theorem:  Every integer greater than 3 can be written as a sum of 2's and 5's. 

 

(That is, if N > 3, then there are nonnegative integers x and y such that N = 2x + 5y.) 

This is not (easily) provable using the First Principle of Induction.  The problem is that 

the way to write N+1 in terms of 2's and 5's has little to do with the way N is written in 

terms of 2's and 5's.  For example, if we know that 

N = 2x + 5y 

we can say that 

N + 1 = 2x + 5y + 1 = 2x + 5(y – 1) + 5 + 1 = 2(x + 3) + 5(y – 1) 

but we have no reason to believe that y – 1 is nonnegative.  (Suppose for example that 

N is 9.) 
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14 "Strong" Form of Induction 

Let P(N) be a proposition regarding the integer N, and let S be the set of all 

integers k for which P(k) is true.  If 

 1) N0 is in S, and 

 2) whenever N0 through N are in S then N+1 is also in S, 

then S contains all integers in the range [N0, ). 

Second (or Strong) Principle of Mathematical Induction 

Interestingly, the "strong" form of induction is logically equivalent to the "weak" form 

stated earlier; so in principle, anything that can be proved using the "strong" form can 

also be proved using the "weak" form. 

There is a second statement of induction, sometimes called the "strong" form, that is 

adequate to prove the result on the preceding slide: 
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15 Using the Second Form of Induction 

Theorem:  Every integer greater than 3 can be written as a sum of 2's and 5's. 

proof:  Let S be the set of all integers n > 3 for which n = 2x + 5y for some 

nonnegative integers x and y. 

If n = 4, then n = 2*2 + 5*0.  If n = 5, then n = 2*0 + 5*1. This establishes the 

basis, that 4 and 5 are in S. 

Now suppose that all integers from 4 through k are elements of S, where k  

5. We need to show that k+1 is an element of S; in other words, we must show 

that k+1 = 2r + 5s for some nonnegative integers r and s.   

Now k+1  6, so k-1  4.  Therefore by our assumption, k-1 = 2x + 5y for 

some nonnegative integers x and y.  Then, simple algebra yields that: 

k+1 = k-1 + 2 = 2x + 5y + 2 = 2(x+1) + 5y, 

whence k+1 is an element of S. 

Therefore, by the Second PMI, S contains all integers [4, ). 

 QED 
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16 Induction Example 
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Consider the sequences {ak} and {dk} : 

proof:  Let S = {k ≥ 0 | ak = dk}.  

Trivial calculations show that a0 = d0 and a1 = d1, so 0 and 1 are in S. 

Suppose that there is some N ≥ 1 such that 0, 1, …, N are in S.  In other words, 

assume that there is some N ≥ 1 such that ai = di for all i from 0 to N. 

Now, N + 1 ≥ 2, so from the definition of {dk}and the inductive assumption we 

have: 

 

 

 
 

Therefore N + 1 is in S, and so by the principle of induction, S = {k ≥ 0}.        QED 

Then for all k ≥ 0. ak = dk. 
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