CS 3114 Data Structures and Algorithms Exam

READ THIS NOW!

e Print your name in the space provided below.
e There are 9 short-answer questions, priced as marked. The maximum score is 100.

e When you have finished, sign the pledge at the bottom of this page and turn in the test and your fact sheet.

e Aside from the allowed one-page fact sheet, this is a closed-book, closed-notes examination.
e No laptops, calculators, cell phones or other electronic devices may be used during this examination.
e Until solutions are posted, you may not discuss this examination with any student who has not taken it.

e Failure to adhere to any of these restrictions is an Honor Code violation.

Name (Last, First) S OllltiO n

printed

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

signed

CS 3114 Data Structures and Algorithms

Exam

1.

[12 points] Determine the exact count complexity function T(N) of the body of the following function. Assume that
calls to operator new take time N. You may assume any other single operations take time 1, as defined in the course

notes. Your answer for T(N) should be in simplest form. Show supporting work!

public static void Q1(int[] A, int N) {

int[] B = new int[N];

for (int i =0; i < N; i++) {

T(N)=

TR I I
ZIME L M

BLi] =
for (int j = 1; J <= N; J = 2*))

BL1] =

]

b
+
*

b
A[N-1-i] = B[i];

1+logN

N-1
1+N +1+Z(2+2+1+ Z (3+5)+1+5
i=0

pass=1

N-1/ l+logN
(Z +11j+N+3

pass=1

=

((1+logN)+11)+N+3

(8logN +19)+N+3

(8logN +19)+ N +3
8N log N +20N +3

{

]H

//
/7/

//
//

/7/

//
//

//

//

1

2

e

R

+ N

before, 2 per pass,
to exit

before, 3 per pass,
to exit

CS 3114 Data Structures and Algorithms Exam

2. Assume that f (N)and g(N) are positive-valued functions defined on the set of non-negative integers.

a)

b)

[6 points] What does the fact given below imply regarding any big-O, big-Q and/or big-® relationships between
the functions? Be complete and precise. No justifications are needed.

vn>1000, f (n)<7g(n)
Straight from the definition, this implies that f(n) is O(g(n))

Of course, this also implies that g(n) is Q(f(n)). But it does not imply any other relationships.

[6 points] What does the fact given below imply regarding any big-O, big-Q and/or big-® relationships between
the functions? Be complete and precise. No justifications are needed.

vn>42,3g(n)< f(n)<5g(n)
Straight from the definition, this implies that f (n) is ®(g(n))

Of course, this also implies that g(n) is ®(f (n)), and every conceivable big-O and big-Q relationship.

CS 3114 Data Structures and Algorithms Exam

3. [10 points] Consider the following functions:

f(n)=n""+nlogn g(n=n"" h(n)=nlogn
Which of the following is true? f is ©(Q). f is O(h).

Prove your conclusion is correct by using theorems covered in class. Note: the theorem that says the ®@-category is
determined by the dominant term doesn't help since none of the theorems directly say which is the dominant term in
this case.

o fm . o n"+nlogn . . (n*" nlogn
limit ()=11m1t1—01g=11m1t 1_01+1_0gl
mgm e N) PN

= 1+limit (loﬂj — 1+limit (mj

o noo! e | 0.01n "%

:1+limit(1?gj:1
n—ow n :

This implies that T is O(Q).

If you tried it the other way around:

1.01 0.01
fimit - i Mt Nlogn 0y
n—o h(n) n—o n log n n—o log n

O 01n70.99 r]0401
=limit| ——— |+ =limit| —— |+ 1=
o { 1/nln2 n—= | 100In2

This implies that f is strictly Q(h), and so not ®(h).

CS 3114 Data Structures and Algorithms Exam

4. [12 points]

a)

b)

In the context of hashing, what is a collision?

A collision occurs when a hashing scheme maps two different key values into the same table slot.

Make the following assumptions about a particular hash table implementation:

e The table is reasonably sized, say twice the number of data objects that will be stored in it.
e The hash function H() is 1-1 from the set of actual key values into the set of integers.

Is it possible that collisions still occur when records are inserted to the table?

Yes.

If collisions could still occur, what besides defects in the hash function could cause a collision to occur.

Even if the table size is reasonable, when we mod the hash function value by the table size we may get the
same table index, and hence a collision.

The basic issue here is that being 1-1 from the set of actual keys into the (infinite) set of integers is not the
same as being 1-1 into the (very finite) set of valid table indices.

CS 3114 Data Structures and Algorithms Exam

5.

[10 points] A hash table implementation uses some form of probing (could be any probing strategy we discussed) to
resolve collisions, but the implementer did not employ tombstones when performing deletion. Instead, the
implementer simply reset a table slot to EMPTY if the element in that slot was deleted.

As aresult, if a single element is deleted from the table, some subsequent searches may fail. Describe precisely, in a
single sentence, which elements (that were already in the table when the deletion was performed) cannot now be
found.

We will not be able to find any element that was inserted while the deleted element was in the table, and whose
insertion required probing that hit (and so went beyond) the slot that contained the deleted element.

[10 points] Recall Pugh's probabilistic skip list. Assume that an implementation does use a random number generator
that has the necessary property of producing a uniform distribution of values, and in fact that about 1/2 the nodes will
be in level 0, 1/4 will be in level 1, 1/8 will be in level 2,and so forth.

Explain how it is still possible that most of the searches in the skip list will require well over log N comparisons.

Even with the correct proportion of skip node types, it's possible that all the level-0 nodes fall in a contiguous
sequence, and so do all the level-1 nodes, and so forth.

In that case, once a search reaches such a sequence of same-level nodes, it deteriorates to a simple linear
traversal.

CS 3114 Data Structures and Algorithms Exam

7.

[12 points] Two developers are told to implement a hashing scheme for the same set of data records, and to use the
same hash function and table size. One developer decides to use linear probing to resolve collisions. The other
developer decides to use chaining with singly-linked lists in each table slot, appending new records to the lists.

When testing her implementation, the second developer discovers that one of the table slots ends up in the following
state (displaying key values for the records):

37 23 41 28

A 4

A\ 4

Given that information, should the first developer be confident that if the record with key 28 is searched for in his
implementation, exactly 3 probe steps will be required (accessing the home slot doesn't count as a probe step)?
Explain clearly why or why not. If not, could the number of required probe steps be less than x? more than x?

When 28 was inserted to the table that used linear probing, the probing must have hit the slots that contained
37 and 23 and 41. So it's not possible that fewer probe steps will be required.

On the other hand, it's entirely possible that additional slots will also be hit during the linear probing, due to
the tendency of linear probing to create contiguous clusters of filled slots; in that case more probe steps will be
required.

[10 points] Recall the AVL tree. Considering only insertion operations, what is that the rotations do physically that
causes the AVL to be superior to a plain BST? Illustrate your reasoning with an example!

Following an insertion, the effect of any rotations would be to cause the subtree where the insertion occurred to
be one level shorter than it would have been without any rotations.

See the AVL notes for illustrative examples.

CS 3114 Data Structures and Algorithms Exam

9.

[12 points] Consider using a PR quadtree (with bucket size 1) to organize data objects that have integer coordinates in
the square region of the xy-plane that is bounded between the points (0, 0) and (1024, 1024).

a) Ifthere are 80 data points, what is the smallest number of levels the quadtree could have? Justify your
conclusion.

Since the branching factor of a quadtree node is 4, the level 0 could contain 1 node, level 1 could contain up to 4
nodes, level 2 could contain up to 16 nodes, level 3 could contain up to 64 nodes, and level 4 could contain up to
256 nodes.

So, there would have to be at least 5 levels in order to have enough leaf nodes to store 80 data points.

b) Suppose the quadtree contains 50 data points, and that every leaf represents a region that is 64 x 64 or smaller.
Suppose that another data point is inserted to the quadtree, and that it is exactly 2 units away from another data
point that is already in the quadtree. Will the insertion of the new data point necessarily cause a leaf to split? If
yes, explain why. If no, give an example illustrating why not.

A split will only occur if the new data point falls into an existing leaf node; that is, if it falls into a subregion
that already contains a data point.

If the new point falls in an empty subregion, but is very close to a boundary and the adjacent subregion
contains a data point that is also very close to the boundary, then those data points could be a distance 2 apart
and there would be no split.

USER FRIENDLY by ILlliad

FALE IT. YOU NEED SOME WELL...A T
%a IT Rggﬁﬁgﬁgﬁ@@-‘é g GOINﬁﬁ'?'g B%ﬁg
BI c] k=1
TO YOU., OBTAN. OPEN. £ ME A COLA:
DRINK. FROLIC. 'S NO NO..YOU KNOW
g YOU HIVE TO LOME
YOU'RE RIGHT.
/ YOURE RIGHT. |2 TO ME, YOUNG JED.
ANY LONGER. :E_
=

Copyright (o) 199 Miad

