
CS 3114 Data Structures & Algorithms  Homework 1:  Trees 

 

 1 

You will submit your solution to this assignment to the Curator System (as HW01).  Your solution must be either a plain text 

file (e.g., NotePad++) or a typed MS Word document; submissions in other formats will not be graded. 

 

Partial credit will only be given if you show relevant work. 

  

 

For questions 1 through 4, refer to the BST generic interface provided for Minor Project 2.  Strive for the most efficient 

solution you can devise.  You may not use any Java collections, including ones you implement yourself, to store any additional 

information (like copying the data elements from the BST into an array). 

 

1. [20 points] Design an algorithm to determine whether a given binary tree contains any single-child nodes; that is, 

nodes that have exactly one child.  Express your solution using Java code as if it were to be implemented as a public 

member function (with private helper) belonging to the BST generic specified in Minor Project 2; your answer (which 

will include both the public and private functions) must conform to the public interface shown below: 

 
// Pre:      none 

// Post:     the BST is unchanged 

// Returns:  true iff the BST has at least one node with a single child  

// 

public boolean hasSingleChild( ) { 

 

   // up to you. . . 

} 

 

 

2.   [20 points] This is a modification of question 1.  Design an algorithm to count the number of single-child nodes in a 

binary search tree; that is, nodes that have exactly one child.  Express your solution using Java code as if it were to be 

implemented as a public member function (with private helper) belonging to the BST generic specified in Minor 

Project 2; your answer (which will include both the public and private functions) must conform to the public interface 

shown below: 

 
// Pre:      none 

// Post:     the BST is unchanged 

// Returns:  the number of nodes in the tree that have a single child 

// 

public int numSingleChildNodes( ) { 

 

   // up to you. . . 

} 

 

 

3. [20 points]  We say that two binary trees are congruent if and only if the two trees have exactly the same structure 

(arrangement of their nodes), without regard for the data values stored in the trees.  For example, trees A and B below 

are congruent, but trees A and C are not: 

 

 

 

 

 

 

 

Design an algorithm to determine whether two BSTs are congruent.  Express your solution using Java code as if it 

were to be implemented as a public member function (with private helper) of some class belonging to same package as 

the BST implementation; your answer (which will include both the public and private functions) must conform to the 

public interface shown below: 

 
  

3 

1 5 

A 

13 

8 25 

B C 

1 

3 

5 



CS 3114 Data Structures & Algorithms  Homework 1:  Trees 

 

 2 

// Pre:      none 

// Post:     the BST is unchanged 

// Returns:  true iff the two trees are congruent 

// 

public boolean areCongruent( BST<Integer> A, BST<Integer> B) { 

 

   // up to you. . . 

} 

 

 

4. Assume that an implementation of the BST generic includes three functions as described below: 

 
// Writes the data elements in the tree (using their toString() method) 

// to the given output stream, using a preorder traversal. 

// 

// Pre:      out is opened on a file 

// Post:     the BST is unchanged 

// 

public void writePreorder( FileWriter out ) { . . . } 

 
// Writes the data elements in the tree (using their toString() method) 

// to the given output stream, using a postorder traversal. 

// 

// Pre:      out is opened on a file 

// Post:     the BST is unchanged 

// 

public void writePostorder( FileWriter out ) { . . . } 

 
// Writes the data elements in the tree (using their toString() method) 

// to the given output stream, using an inorder traversal. 

// 

// Pre:      out is opened on a file 

// Post:     the BST is unchanged 

// 

public void writeInorder( FileWriter out ) { . . . } 

 

a) [10 points]  If writePreorder() and writeInorder() yield exactly the same output for a given 

nonempty BST, what must be true about that BST?  Explain. 

 

b) [10 points]  If writePreorder() and writePostorder() yield exactly the same output for a given 

nonempty BST, what must be true about that BST?  Explain. 

 

 

5. [20 points] Use Induction to prove the following theorem about binary trees: 

 

For every nonempty binary tree, the number of nodes that have two children is one less than the number of leaf 

nodes. 

 

Note:  this is similar to the first part of the Full Binary Tree theorem, but different, since this does not assume anything 

special about the binary tree, other than that it is nonempty. 


