
Splay Trees

 Data Structures & Algorithms

1

CS@VT ©2013 Barnette, McQuain

Dynamic Access Binary Search Trees

Splay Trees* are self-adjusting binary search trees in which the shape of the tree is

changed based upon the accesses performed upon the elements.

When an element of a splay tree is accessed the node with the element is percolated, (i.e.

splayed), to the root by applying AVL rotations. The more frequently accessed items will

conglomerate near the top of the tree. This results in excellent performance when a

subset of the tree elements are accessed much more frequently then other elements.

If all elements of the tree have equal access probability than a balanced binary search tree

should be used.

*D. D. Sleator and R. E. Tarjan, 1985.

Splay Trees

 Data Structures & Algorithms

2

CS@VT ©2013 Barnette, McQuain

Amortized Analysis

Amortized analysis: the complexity is analyzed based upon a sequence of operations

instead of single individual operations.

*G. M. Adelson-Velskii and E. M. Landis, 1962.

Amortized analysis takes into account the impact of operations upon following

operations. Infrequently occurring costly individual operations may not have much effect

on the overall performance if they are far outweighed by the less inexpensive frequently

executed operations.

Formally, if “a sequence of M operations has total worst-case running time O(M f(N)),

we say that the amortized running time is O(f(N))” [Weiss].

A series of splay tree M operations takes at most O(M log N). Thus a splay tree has an

amortized cost of O(log N).

A single operation may take (N) time, but be outweighed by other operations in a

series. The amortized bound of O(log N) is not as strong of a bound as a worst-case

O(log N) per operation bound.

Splay Trees

 Data Structures & Algorithms

3

CS@VT ©2013 Barnette, McQuain

Zig-Zag

Consider accessing the value 65 in the BST tree:

50

25 70

65 75

55 68

30

The zig-zag case occurs when the accessed item is the left child of its parent and the

parent is a right child (or vice versa). The item is rotated with its parent, and then its

grandparent. In this example the rotations are accomplished by a right rotation followed

by a left rotation which are switched in the right child – left child symmetric case.

Splay Trees

 Data Structures & Algorithms

4

CS@VT ©2013 Barnette, McQuain

Zig-Zag

Right rotation with parent.
50

25

70

65

75

55

68

30

65

50
70

75
25

68
55

30

Left rotation with grandparent.

Splaying approximately halves

the depth of other nodes on the

access path.

Splay Trees

 Data Structures & Algorithms

5

CS@VT ©2013 Barnette, McQuain

Zig-Zig

Consider accessing the value 25 in the BST tree:

The zig-zig case occurs when the accessed item is the left child of its parent and the

parent is also a left child (or vice versa). The parent is first rotated with the grandparent,

and then the accessed items’ node is rotated with its parent. In this example the rotations

are accomplished by a right rotation followed by another right rotation which are

switched in the left child – left child symmetric case.

65

50
70

75
25

68
55

30

Splay Trees

 Data Structures & Algorithms

6

CS@VT ©2013 Barnette, McQuain

Zig-Zig

Right rotation between parent

and grandparent.

Right rotation with parent.

Splaying rotations continue until

the root is reached. If the node is

one level below the root only one

rotation is performed.

65

50

70

75

25

68

55 30

65

50

70

75

25

68

55

30

Splay Trees

 Data Structures & Algorithms

7

CS@VT ©2013 Barnette, McQuain

Modification

Deletion

• First access the node to force it to percolate to the root.

• Remove the root.

• Determine the largest item in the left subtree and rotate it to the root of the left

subtree which results in the left subtree new root having no right child.

• The right subtree is then added as the right child of the new root.

Insertion

• Starts the same as a BST with the new node created at the a leaf. The new leaf node

is splayed until it becomes the root.

Splaying also occurs on unsuccessful

searches. The last item on the access

path is splayed in this case.

Splay Trees

 Data Structures & Algorithms

8

CS@VT ©2013 Barnette, McQuain

Pros:

• Simpler coding than AVL trees

• Average amortized cost is roughly the same as a balanced BST.

• No balance bookkeeping information need be stored.

• Rotations on long access paths tend to reduce search cost in the future.

• Most accesses occur near the root minimizing the number of rotations.

Cons:

• Height can degrade to be linear. (QTP: when would this occur?)

• Tree changes when only a search is performed. In a concurrent system multiple

processes accessing the same splay tree can result in critical region problems.

Pros & Cons

Splay Trees

 Data Structures & Algorithms

9

CS@VT ©2013 Barnette, McQuain

Top-Down Splay Trees

Bottom-Up Splaying

The previous splay tree description is known as a “bottom-up” splay tree since the tree

restructuring is performed back up the access towards the root.

Top-Down Splaying

An alternate implementation involves performing the tree restructuring as one proceeds

down the access path.

Alleviates the need to maintain the parent pointers using the recursive runtime stack.

As the search down the access path occurs three trees are maintained: left, middle and

right. The left subtree holds nodes in the tree that are less than the target, but not in the

middle tree. The right subtree holds nodes that are greater than the target, but not in the

middle tree. The middle tree holds the current root of the access path which contains the

target if it exists in the tree.

There are three cases for maintaining the left, right and middle trees: zig, zig-zig, zig-

zag. (There are also three symmetric cases: zag, zag-zag, zag-zig.)

Splay Trees

 Data Structures & Algorithms

10

CS@VT ©2013 Barnette, McQuain

Top-Down Splaying: initialization

50

25 70

65 75

55 68

30

M L R

Consider accessing the value 20 in the BST tree:

Splay Trees

 Data Structures & Algorithms

11

CS@VT ©2013 Barnette, McQuain

Top-Down Splaying: zig

Zig case: when searching for an item smaller than the left subroot (in the middle tree)

and the left subroot has no left child, but does have a right child.

25

30

M
L R

50

70

65 75

55 68
The previous middle tree is

connected to the right tree as the

left child of the smallest item in R.

Splay Trees

 Data Structures & Algorithms

12

CS@VT ©2013 Barnette, McQuain

Top-Down Splaying: zig-zig

Zig-Zig case: when searching for an item smaller than the left subroot (in the middle

tree) and the left subroot has a left child.

The example below starts from the initial position and with an initial insertion of item 20

into the tree.

M L

R

20

50

25

70

65 75

55 68

30

Splay Trees

 Data Structures & Algorithms

13

CS@VT ©2013 Barnette, McQuain

Top-Down Splaying: zig-zag

Zig-Zag case: when searching for an item greater than the left subroot (in the middle

tree).

50

70

65 75

55 68

30

M L R

Consider accessing the value 30 in the BST tree:

25

20

