
Heaps

 Data Structures & Algorithms

1

CS@VT ©2000-2009 McQuain

Heaps

A heap is a complete binary tree.

A max-heap is a complete binary tree in which the value in each internal node is greater

than or equal to the values in the children of that node.

A min-heap is defined similarly.
97

79

93

90 81

84

83

55 42 21 73 83

0 1 2 3 4 5 6 7 8 9 10 11

97 93 84 90 79 83 81 42 55 73 21 83

Mapping the elements of

a heap into an array is

trivial:

if a node is stored at

index k, then its left

child is stored at index

2k+1 and its right child

at index 2k+2

Heaps

 Data Structures & Algorithms

2

CS@VT ©2000-2009 McQuain

Building a Heap

The fact that a heap is a complete binary tree allows it to be efficiently represented

using a simple array.

Given an array of N values, a heap containing those values can be built, in situ, by

simply “sifting” each internal node down to its proper location:

81

73

74

90 79 93

93

73

74

90 79 81

93

73

90

74 79 81

73

93

90

74 79 81

 - start with the last

internal node

 - swap the current

internal node with

its larger child, if

necessary

 - then follow the

swapped node down

 - continue until all

internal nodes are

done

* *

*

*

Heaps

 Data Structures & Algorithms

3

CS@VT ©2000-2009 McQuain

Heap Class Interface

We will consider a somewhat minimal maxheap class:

public class BinaryHeap<T extends Comparable<? super T>> {

 private static final int DEFCAP = 10; // default array size

 private int size; // # elems in array

 private T [] elems; // array of elems

 public BinaryHeap() { . . . } // construct heaps in

 public BinaryHeap(int capacity) { . . . } // various ways

 public BinaryHeap(T [] items) { . . . }

 public boolean insert(T D) { . . . } // insert new elem

 public T findMax() { . . . } // get maximum element

 public T deleteMax() { . . . } // remove maximum element

 public void clear() { . . . } // reset heap to empty

 public boolean isEmpty() { . . . } // is heap empty?

 private void siftDown(int hole) { . . . } // siftdown algorithm

 private void buildHeap() { . . . } // heapify

 public void printHeap() { . . . } // linear display

}

Heaps

 Data Structures & Algorithms

4

CS@VT ©2000-2009 McQuain

buildHeap and siftDown

As described earlier:

private void buildHeap() {

 // first elem is stored at index 1, not 0

 for (int idx = size / 2; idx > 0; idx--)

 siftDown(idx);

}

private void siftDown(int hole) {

 int child;

 T tmp = elems[hole];

 for (; hole * 2 <= size; hole = child) {

 child = hole * 2;

 if (child != size &&

 elems[child + 1].compareTo(elems[child]) > 0)

 child++;

 if (elems[child].compareTo(tmp) > 0)

 elems[hole] = elems[child];

 else

 break;

 }

 elems[hole] = tmp;

}

Determine which child node

is larger

If child is larger than parent,

it must move up

Finally, put starting value in

right place

QTP: Why is idx

initialized this

way?

Heaps

 Data Structures & Algorithms

5

CS@VT ©2000-2009 McQuain

private void siftDown(int hole) {

 int child;

 T tmp = elems[hole];

 for (; hole * 2 <= size; hole = child) {

 child = hole * 2;

 if (child != size &&

 elems[child + 1].compareTo(elems[child]) > 0)

 child++;

 if (elems[child].compareTo(tmp) > 0)

 elems[hole] = elems[child];

 else

 break;

 }

 elems[hole] = tmp;

}

Cost of siftDown

In a complete binary tree of N nodes, the number of levels is at most 1 + log(N).

Since each non-terminating iteration of the loop moves the target value a distance of 1

level, the loop will perform no more than log(N) iterations.

Thus, the worst case cost of SiftDown() is Θ(log N).

In the worst case, we

perform two element

comparisons…

…and one element copy per

iteration

That’s 2log(N) comparisons

and log(N) swaps.

Heaps

 Data Structures & Algorithms

6

CS@VT ©2000-2009 McQuain

Cost of buildHeap

Suppose we start with a complete binary tree with N nodes; the number of steps required

for sifting values down will be maximized if the tree is also full, in which case N = 2d-1

for some integer d = log N. For example:

42

55

83

90 81

21

93

37 97 84 73 83 95 62 17

level 0: 20 nodes, can sift

down d - 1 levels

level 1: 21 nodes, can sift

down d - 2 levels

level 2: 22 nodes, can sift

down d - 3 levels

We can prove that in general, level k of a full and complete binary tree will contain 2k

nodes, and that those nodes are d – k – 1 levels above the leaves.

Thus…

Heaps

 Data Structures & Algorithms

7

CS@VT ©2000-2009 McQuain

Cost of buildHeap

In the worst case, the number of comparisons BuildHeap() will require in building a heap

of N nodes is given by:

Since, at worst, there is one move for each two comparisons, the maximum number of

element moves is N – log N + 1.

Hence, building a heap of N nodes is Θ(N) in both comparisons and element moves.

 log2122

22212122sComparison
1

0

1

0

1
1

0

NNd

kdkd

d

d

k

d

k

kk
d

k

k

Heaps

 Data Structures & Algorithms

8

CS@VT ©2000-2009 McQuain

Deleting the Root of a Heap

We will see that the most common operation on a heap is the deletion of the root node.

The heap property is maintained by sifting down…

public T deleteMax() {

 if (isEmpty())

 throw new RuntimeException();

 T maxItem = elems[1];

 elems[1] = elems[size];

 size--;

 siftDown(1);

 return maxItem;

}

Check for empty heap

Save the root (at index 1),

replace it with the last leaf,

shrink the heap by one node.

Sift the new root down to

restore the heap property.

QTP: Why is the last leaf chosen as the

replacement for the root?

Heaps

 Data Structures & Algorithms

9

CS@VT ©2000-2009 McQuain

Example of Root Deletion

Given the initial heap:

In a heap of N nodes, the maximum

distance the root can sift down

would be log N - 1.

97

79

93

90 81

84

83

55 42 21 73 83

83

79

93

90 81

84

83

55 42 21 73
93

79

83

90 81

84

83

55 42 21 73

Heaps

 Data Structures & Algorithms

10

CS@VT ©2000-2009 McQuain

Heap Sort

A list can be sorted by first building it into a heap, and then iteratively deleting the root

node from the heap until the heap is empty. If the deleted roots are stored in reverse

order in an array they will be sorted in ascending order (if a max heap is used).

public static void heapSort(Integer[] List, int Sz) {

 BinaryHeap<Integer> toSort = new BinaryHeap<Integer>(List, Sz);

 int Idx = Sz - 1;

 while (!toSort.isEmpty()) {

 List[Idx] = toSort.deleteMax();

 Idx--;

 }

}

Heaps

 Data Structures & Algorithms

11

CS@VT ©2000-2009 McQuain

Cost of Deleting the Roots

Recalling the earlier analysis of building a heap, level k of a full and complete binary

tree will contain 2k nodes, and that those nodes are k levels below the root level.

So, when the root is deleted the maximum number of levels the swapped node can sift

down is the number of the level from which that node was swapped.

Thus, in the worst case, for deleting all the roots…

 NNNN

dkk d
d

k

k
d

k

k

4log2log2

12242422 sComparison 1
1

1

1
1

1

As usual, with Heap Sort, this would entail essentially the same number of element

moves.

Heaps

 Data Structures & Algorithms

12

CS@VT ©2000-2009 McQuain

Cost of Heap Sort

Adding in the cost of building the heap from our earlier analysis,

 NNN

NNNNNN

2log2

4log2log2log22 sComparison Total

and...

So, in the worst case, Heap Sort is (N log N) in both swaps and comparisons.

 NNN log Swaps Total

Heaps

 Data Structures & Algorithms

13

CS@VT ©2000-2009 McQuain

Priority Queues

A priority queue consists of entries, each of which contains a key field, called the

priority of the entry.

Aside from the usual operations of creation, clearing, tests for full and empty, and

reporting its size, a priority queue has only two operations:

 - insertion of a new entry

 - removal of the entry having the largest (or smallest) key

Key values need not be unique. If not, then removal may target any entry holding the

largest value.

Heaps

 Data Structures & Algorithms

14

CS@VT ©2000-2009 McQuain

Representation

Representation of a priority queue may be achieved using:

 - a sorted list, but…

 - an unsorted list, but…

 - a max-heap

Priority queues may be used to manage prioritized processes in a time-sharing

environment, time-dependent simulations, and even numerical linear algebra.

