
Java equals() 

 Data Structures & Algorithms 

1 

CS@VT ©2010-12 McQuain 

equals() in the class Object 

The Object class implements a public equals() method that returns true iff the two 

objects are the same object. 

 

That is: 

 x.equals(y) == true iff x and y are (references to) the same object 

 

For some subclasses, this is adequate, especially for types for which the notion of an 

equality comparison doesn't really make practical sense. 



Java equals() 

 Data Structures & Algorithms 

2 

CS@VT ©2010-12 McQuain 

Identity vs Equality 

A deeper examination of the issue indicates there are two fundamentally distinct 
relationships at work, and that Object equals() conflates them: 

identity 

 the relationship of being the same thing; 

 x is identical to y iff x and y are the same object; 

 in Java, this is tested by the operator == 

equality 

 the relationship of having the same value; 

 x is equal to y iff x and y, in some useful sense, have equivalent content; 

 x and y may or may not be the same object; 

 in Java, this is tested by the equals() method 

For many user-defined types, there are natural definitions of an equality relationship. 



Java equals() 

 Data Structures & Algorithms 

3 

CS@VT ©2010-12 McQuain 

General Contract for equals() 

The equals method implements an equivalence relation on non-null object references, 
equals() is: 

 - reflexive: for any non-null reference value x, x.equals(x) should return true 

 - symmetric: for any non-null reference values x and y, x.equals(y) should return 

true if and only if y.equals(x) returns true  

 - transitive: for any non-null reference values x, y, and z, if x.equals(y) returns 

true and y.equals(z) returns true, then x.equals(z) should return true  

In addition: 

 - it is consistent: for any non-null reference values x and y, multiple invocations of 

x.equals(y) consistently return true or consistently return false, provided no 

information used in equals comparisons on the objects is modified.  

 - for any non-null reference value x, x.equals(null) should return false.  



Java equals() 

 Data Structures & Algorithms 

4 

CS@VT ©2010-12 McQuain 

A User-defined Class 

public class FileEntry { 

 

   public Long   offset;   // offset of record in file 

   public String record;   // record contents 

 

   public FileEntry(long offset, String data) { 

 

      this.offset = offset; 

      this.record = data; 

   } 

   . . . 

} 

 

Here's a class that might be used in a program that accesses records from a file. 

 

It's certainly possible we might create two different FileEntry objects from the same 

record, in which case the notion of equals is different from identity. 



Java equals() 

 Data Structures & Algorithms 

5 

CS@VT ©2010-12 McQuain 

Standard equals() Features 

public class FileEntry { 

 

   . . . 

 

   public boolean equals(Object other) { 

 

      // Make sure there really IS another object: 

      if ( other == null ) return false; 

 

      // Make sure it's of the correct type: 

      if ( !this.getClass().equals(other.getClass()) ) 

         return false; 

      . . . 

   } 

} 

We need to satisfy the general contract: 



Java equals() 

 Data Structures & Algorithms 

6 

CS@VT ©2010-12 McQuain 

Specialized equals() Features 

public class FileEntry { 

 

   . . . 

 

   public boolean equals(Object other) { 

 

      . . . 

      // Get a reference of the appropriate type: 

      FileEntry o = (FileEntry) other; 

 

      // Perform the type-specific test for equality: 

      return ( this.offset.equals(o.offset) ); 

   } 

} 

We need to implement a sensible definition of what equality means for this type: 



Java equals() 

 Data Structures & Algorithms 

7 

CS@VT ©2010-12 McQuain 

Complete Method 

public class FileEntry { 

 

   . . . 

 

   public boolean equals(Object other) { 

 

      // Make sure there really IS another object: 

      if ( other == null ) return false; 

 

      // Make sure it's of the correct type: 

      if ( !this.getClass().equals(other.getClass()) ) 

         return false; 

 

      // Get a reference of the appropriate type: 

      FileEntry handle = (FileEntry) other; 

 

      // Perform the type-specific test for equality: 

      return ( this.offset.equals(handle.offset) ); 

   } 

} 



Java equals() 

 Data Structures & Algorithms 

8 

CS@VT ©2010-12 McQuain 

Issues with Overriding 

Consider the following scenario: 

public class  

    prQuadtree< T extends TwoDComparable<? super T> > { 

   . . . 

   // calls equals() on the generic objects it stores 

public interface TwoDComparable<T> { 

   public long getX(); 

   public long getY(); 

} 

The calls to equals() will bind to Object equals() because the Java compiler 

does not know what the actual type is going to be. 

All that's known is that a T is-a-kind-of TwoDcomparable<?> and that doesn't 

guarantee a specialized implementation of equals(). 

And so, the tree's search logic will be broken… 



Java equals() 

 Data Structures & Algorithms 

9 

CS@VT ©2010-12 McQuain 

A Fix 

If we add the equals() method to the interface that T must extend, all is well: 

public interface TwoDComparable<T> { 

   public long getX(); 

   public long getY(); 

   public boolean equals(Object other); 

} 

Now the compiler knows that whatever a T is, it must provide an equals() method. 

And so, the tree's search logic will work… 



Java equals() 

 Data Structures & Algorithms 

10 

CS@VT ©2010-12 McQuain 

A Debugging Hint 

When in doubt, let your code talk to you: 

public class FileEntry { 

   . . . 

   public boolean equals(Object other) { 

 

      System.out.println("Call made to FileEntry.equals()"); 

      . . . 

   } 

} 


