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equals() in the class Object 

The Object class implements a public equals() method that returns true iff the two 

objects are the same object. 

 

That is: 

 x.equals(y) == true iff x and y are (references to) the same object 

 

For some subclasses, this is adequate, especially for types for which the notion of an 

equality comparison doesn't really make practical sense. 
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Identity vs Equality 

A deeper examination of the issue indicates there are two fundamentally distinct 
relationships at work, and that Object equals() conflates them: 

identity 

 the relationship of being the same thing; 

 x is identical to y iff x and y are the same object; 

 in Java, this is tested by the operator == 

equality 

 the relationship of having the same value; 

 x is equal to y iff x and y, in some useful sense, have equivalent content; 

 x and y may or may not be the same object; 

 in Java, this is tested by the equals() method 

For many user-defined types, there are natural definitions of an equality relationship. 
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General Contract for equals() 

The equals method implements an equivalence relation on non-null object references, 
equals() is: 

 - reflexive: for any non-null reference value x, x.equals(x) should return true 

 - symmetric: for any non-null reference values x and y, x.equals(y) should return 

true if and only if y.equals(x) returns true  

 - transitive: for any non-null reference values x, y, and z, if x.equals(y) returns 

true and y.equals(z) returns true, then x.equals(z) should return true  

In addition: 

 - it is consistent: for any non-null reference values x and y, multiple invocations of 

x.equals(y) consistently return true or consistently return false, provided no 

information used in equals comparisons on the objects is modified.  

 - for any non-null reference value x, x.equals(null) should return false.  
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A User-defined Class 

public class FileEntry { 

 

   public Long   offset;   // offset of record in file 

   public String record;   // record contents 

 

   public FileEntry(long offset, String data) { 

 

      this.offset = offset; 

      this.record = data; 

   } 

   . . . 

} 

 

Here's a class that might be used in a program that accesses records from a file. 

 

It's certainly possible we might create two different FileEntry objects from the same 

record, in which case the notion of equals is different from identity. 
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Standard equals() Features 

public class FileEntry { 

 

   . . . 

 

   public boolean equals(Object other) { 

 

      // Make sure there really IS another object: 

      if ( other == null ) return false; 

 

      // Make sure it's of the correct type: 

      if ( !this.getClass().equals(other.getClass()) ) 

         return false; 

      . . . 

   } 

} 

We need to satisfy the general contract: 
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Specialized equals() Features 

public class FileEntry { 

 

   . . . 

 

   public boolean equals(Object other) { 

 

      . . . 

      // Get a reference of the appropriate type: 

      FileEntry o = (FileEntry) other; 

 

      // Perform the type-specific test for equality: 

      return ( this.offset.equals(o.offset) ); 

   } 

} 

We need to implement a sensible definition of what equality means for this type: 
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Complete Method 

public class FileEntry { 

 

   . . . 

 

   public boolean equals(Object other) { 

 

      // Make sure there really IS another object: 

      if ( other == null ) return false; 

 

      // Make sure it's of the correct type: 

      if ( !this.getClass().equals(other.getClass()) ) 

         return false; 

 

      // Get a reference of the appropriate type: 

      FileEntry handle = (FileEntry) other; 

 

      // Perform the type-specific test for equality: 

      return ( this.offset.equals(handle.offset) ); 

   } 

} 
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Issues with Overriding 

Consider the following scenario: 

public class  

    prQuadtree< T extends TwoDComparable<? super T> > { 

   . . . 

   // calls equals() on the generic objects it stores 

public interface TwoDComparable<T> { 

   public long getX(); 

   public long getY(); 

} 

The calls to equals() will bind to Object equals() because the Java compiler 

does not know what the actual type is going to be. 

All that's known is that a T is-a-kind-of TwoDcomparable<?> and that doesn't 

guarantee a specialized implementation of equals(). 

And so, the tree's search logic will be broken… 
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A Fix 

If we add the equals() method to the interface that T must extend, all is well: 

public interface TwoDComparable<T> { 

   public long getX(); 

   public long getY(); 

   public boolean equals(Object other); 

} 

Now the compiler knows that whatever a T is, it must provide an equals() method. 

And so, the tree's search logic will work… 
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A Debugging Hint 

When in doubt, let your code talk to you: 

public class FileEntry { 

   . . . 

   public boolean equals(Object other) { 

 

      System.out.println("Call made to FileEntry.equals()"); 

      . . . 

   } 

} 


