
BST Implementation

Data Structures & Algorithms

1

CS@VT ©2000-2013 McQuain

Generic BST Interface

Here’s a partial generic BST interface:

public class BST<T extends Comparable<? super T>> {

class BinaryNode {

. . .

T element; // the data in the node

BinaryNode left; // pointer to the left child

BinaryNode right; // pointer to the right child

}

BinaryNode root; // pointer to root node, if present

public BST() { . . . }

public boolean isEmpty() { . . . }

public T find(T x) { . . . }

public boolean insert(T x) { . . . }

public boolean remove(T x) { . . . }

public void clear() { . . . }

public boolean equals(Object other) { . . . }

// private methods follow

}

BST Implementation

Data Structures & Algorithms

2

CS@VT ©2000-2013 McQuain

Generic Type Bounds

Here’s a partial generic BST interface, adapted from Weiss:

public class BST<T extends Comparable<? super T>> {

. . .

}

public int compareTo(Object o)

Returns: a negative integer, zero, or a

positive integer as this object is less

than, equal to, or greater than the

specified object.
See Weiss 1.5.6

BST Implementation

Data Structures & Algorithms

3

CS@VT ©2000-2013 McQuain

Generic BST Node

Here’s a partial generic BST node interface, adapted from Weiss:

private static class BinaryNode<T> {

// Constructors

BinaryNode(T theElement){

this(theElement, null, null);

}

BinaryNode(T theElement, BinaryNode<T> lt,

BinaryNode<T> rt){

element = theElement;

left = lt;

right = rt;

}

T element; // (reference to) the data "in" the node

BinaryNode<T> left; // (reference to) left child

BinaryNode<T> right; // (reference to) right child

}

BST Implementation

Data Structures & Algorithms

4

CS@VT ©2000-2013 McQuain

BST find() Implementation

The BST find() function provides client access to data objects within the tree:

public T find(T x) {

return find(x, root);

}

private T find(T x, BinaryNode<T> sRoot) {

if (sRoot == null)

return null;

int compareResult = x.compareTo(sRoot.element);

if (compareResult < 0)

return find(x, sRoot.left);

else if (compareResult > 0)

return find(x, sRoot.right);

else

return sRoot.element; // Match

}

Warning:

be sure you understand the

potential dangers of

supplying this function'

and the benefits of doing

so'

BST Implementation

Data Structures & Algorithms

5

CS@VT ©2000-2013 McQuain

BST insert() Implementation

The public insert() function is just a stub to call the recursive helper:

public void insert(T x) {

root = insert(x, root);

}

The stub simply calls the helper function..

The helper function must find the appropriate place in the tree to place the new node.

The design logic is straightforward:

- locate the parent "node" of the new leaf, and

- hang a new leaf off of it, on the correct side

Warning:

the BST definition in these

notes does not allow for

duplicate data values to

occur, the logic of insertion

may need to be changed

for your specific

application.

BST Implementation

Data Structures & Algorithms

6

CS@VT ©2000-2013 McQuain

BST insert() Helper

The insert() helper function:

private BinaryNode<T> insert(T x, BinaryNode<T> sRoot) {

if (sRoot == null)

return new BinaryNode<T>(x, null, null);

int compareResult = x.compareTo(sRoot.element);

if (compareResult < 0)

sRoot.left = insert(x, sRoot.left);

else if (compareResult > 0)

sRoot.right = insert(x, sRoot.right);

else

; // Duplicate; do nothing

return sRoot;

}

When the parent of the new value is found, one more recursive call takes place, passing
in a null pointer to the helper function.

Note that the insert helper function must be able to modify the node pointer parameter,
and that the search logic is precisely the same as for the find() function.

BST Implementation

Data Structures & Algorithms

7

CS@VT ©2000-2013 McQuain

BST insert() Helper Logic

private BinaryNode<T> insert(T x, BinaryNode<T> sRoot) {

if (sRoot == null)

return new BinaryNode<T>(x, null, null);

int compareResult = x.compareTo(sRoot.element);

if (compareResult < 0)

sRoot.left = insert(x, sRoot.left);

. . .

return sRoot;

}

When we install the new node, we must modify a reference in the parent node.

Java references are primitives and we cannot pass a reference to a primitive.

The design here:

- creates the new node during a call that "falls off a branch of the tree"

- installs the new node after returning to the call in the parent node

BST Implementation

Data Structures & Algorithms

8

CS@VT ©2000-2013 McQuain

BST delete() Implementation

The public delete() function is very similar to the insertion function:

public void delete(T x) {

root = delete(x, root);

}

The delete() helper function design is also relatively straightforward:

- locate the parent of the node containing the target value

- determine the deletion case (as described earlier) and handle it:

- parent has only one subtree

- parent has two subtrees

The details of implementing the delete helper function are left to the reader…

BST Implementation

Data Structures & Algorithms

9

CS@VT ©2000-2013 McQuain

Parent Pointers

Some binary tree implementations employ parent pointers in the nodes.

- increases memory cost of the tree (probably insignificantly)

- increases complexity of insert/delete/copy logic (insignificantly)

- provides some unnecessary alternatives when implementing insert/delete

- may actually simplify the addition of iterators to the tree (later topic)

BST Implementation

Data Structures & Algorithms

10

CS@VT ©2000-2013 McQuain

Some Refinements

The given BST template may also provide additional features:

- a function to provide the size of the tree

- a function to provide the height of the tree

- a function to display the tree in a useful manner

It is also useful to have some instrumentation during testing. For example:

- log the values encountered and the directions taken during a search

This is also easy to add, but it poses a problem since we generally do not want to see such

output when the BST is used.

I resolve this by adding some data members and mutators to the template that enable the

client to optionally associate an output stream with the object, and to turn logging of its

operation on and off as needed.

