
Debugging 1

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Debugging in Eclipse

We are built to make mistakes, coded for error.

Lewis Thomas

It is one thing to show a man that he is in error, and another to put

him in possession of the truth.

John Locke

Debugging 2

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Prerequisites for Eclipse

To use Eclipse you must have an installed version of the Java Runtime Environment (JRE).

The latest version is available from java.com.

Since Eclipse includes its own Java compiler, it is not strictly necessary to have a version

of the Java Development Kit (JDK) installed on your computer.

However, I recommend installing one anyway so that you can test your code against the

"real" Java compiler.

The latest version is available from: www.oracle.com/technetwork/java/

If you install the JDK, I recommend putting it in a root-level directory, and making sure

there are no spaces in the pathname for the directory.

Debugging 3

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Eclipse Workbench

The initial Eclipse Workbench (my configuration):

Restore View

Minimize View

Maximize View

Restore View

Hover for info%

Debugging 4

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Eclipse Java Perspective Toolbar

Choose a Perspective

New Project / Save / Save All / Print

Build Project

Start Debugging + configurations

Run Project + configurations

Run Last Tool + configurations

Debugging 5

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Eclipse Java Perspective Toolbar

New Java Project / Package / Class

Open Type / Open Task / Search + options

Go to last edit location

Back/Next + more navigation options

Debugging 6

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Creating a New Java Project

In the Workbench, select File/New/Java Project:

Debugging 7

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Creating a New Java Project

In the resulting dialog box:

Enter a name for the Project.

For now, just take the defaults for the

remaining options.

Click Next and then Finish in the next

dialog.

Debugging 8

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Adding Source for the DList Example

Download the file DListExample.zip from the course website Resources page, and place

the contents into the src directory for the Eclipse project you just created:

Debugging 9

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Performing a Build

Back in Eclipse, right-click on the project icon for DList and select Refresh…

Use the Project menu or click on the Build All button () to compile the code.

Debugging 10

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Running the Program

To execute the program, click on the Run button ().

As indicated by the source code, the test driver writes

its output to a file named Log.txt:

Unfortunately, there appears to be an error; the value 5

should have been added to the list and appear in the

final listing of the contents… it's not there.

display of

initial list

display of

list after

deleting 5

display of

list after

reinserting 5

Debugging 11

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Controlling Execution

Now, we have some clues about the error:

• The list appears to be OK after the first for loop completes; that doesn't indicate

any problems with the add() method called there.

• The list appears to be OK after the call to the removeFirstOccurrenceOf()

method; that doesn't indicate any problems there.

• The list is missing an element after the call to the second add() method; that

seems to indicate the problem lies there…

It would be useful to be able to run the program to a certain point, check the state of the list

(and perhaps other variables), and then step carefully through the subsequent execution,

watching just how things change.

Fortunately, Eclipse provides considerable support for doing just that.

Debugging 12

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Kinds of Breakpoints

A breakpoint marks a location or condition under which we want the program's execution

to be suspended.

Eclipse supports setting four kinds of breakpoints:

line breakpoint halt when execution reaches a specific statement

method breakpoint halt when execution enters/exits a specific method

expression breakpoint halt when a user-defined condition becomes true, or changes

value

exception breakpoint halt when a particular Java exception occurs (caught or not)

Debugging 13

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Setting a Line Breakpoint

line breakpoint halt when execution reaches a specific statement

To set one, just double-click in the editor margin next to the selected line of code:

Debugging 14

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Running to a Breakpoint

Go to the Run menu and select Debug (or use the keyboard shortcut F11):

Debugging 15

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Debug Perspective

This opens the Debug Perspective:

You may see a different window layout; feel free to close other Views, like Outline if they

are visible.

Variables

Execution stack

Source

Debugging 16

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Using the Variables View

At this point, the list constructor has run… let's examine the structure:

Objects are assigned unique

IDs as they are created;

these allow us to infer the

physical structure…

Debugging 17

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Using the Variables View

Examine the values of the fields of front and rear:

OK, that looks just fine… two guard nodes pointing at each

other, neither holding a data value.

front.elem

front.next

front.prev

26: list

28: list.front

30: list.rear

rear.elem

rear.next

rear.prev

28

30

Debugging 18

Data Structures & AlgorithmsCS@VT ©2012 McQuain

The Debug Toolbar

1. Resume – Continues execution until breakpoint or thread ends

2. Suspend – Interrupts a running thread

3. Terminate – Ends the execution of the selected thread

4. Disconnect – Disconnect from a remote debugging session

5. Remove terminated launches – Closes all terminated debug sessions

6. Step Into – Steps into a method and executes its first line of code

7. Step Over – Executes the next line of code in the current method

8. Step Return – Continues execution until the end of the current method (until a return)

9. Drop to Frame – Returns to a previous stack frame

10.Step with Filters – Continues execution until the next line of code which is not filtered

out

1 2 3 4 5 6 7 8 9 10

Debugging 19

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Step-by-step Execution

For illustration, we'll examine the insertion of the first data node, step by step:

Note the appearance of the variable i and its value.

Debugging 20

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Step-by-step Execution

Click the step-into button again; now we'll enter the call to add():

Now, I don't really want to trace the constructor, much less the call to new, so this time I'll

click the step-over button…

Debugging 21

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Step-over versus Step-into

The difference is that if you are executing a method call (or invoking new, for example) in

the current statement:

step-into takes you into the implementation of that method

step-over calls the method, but does not step you through its execution

Both are useful… step-into is frustrating when system code is involved.

Debugging 22

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Step-by-step Execution

So, we see that the needed node has been properly initialized:

Debugging 23

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Step-by-step Execution

Three clicks on step-over (or step-into) bring us to this point:

Debugging 24

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Checking the List Structure

36: toAdd

toAdd.elem

toAdd.prev

toAdd.next

0

31

Well, that looks OK.

front.elem

front.next

front.prev

26: list

28: list.front

30: list.rear

rear.elem

rear.next

rear.prev

28

30

Debugging 25

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Resetting Breakpoints and Resuming

OK, we've confirmed that the first data node is inserted properly; now we can remove the

breakpoint at the for loop, and set one at the call to the removeFirstOccurrenceOf()

method, and then click Resume to continue execution:

Debugging 26

Data Structures & AlgorithmsCS@VT ©2012 McQuain

After ResumingA the List is Constructed

Execution proceeds to the new breakpoint:

Debugging 27

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Complete List Structure

2826: list

30

36

37

47

45

43

53

0

1

4

5

6

9

Debugging 28

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Step Into removeFirstOccurrenceOf()

Use step-into and proceed to the while loop that will walk to the first occurrence of the

target value:

Debugging 29

Data Structures & AlgorithmsCS@VT ©2012 McQuain

In removeFirstOccurrenceOf()

Continue stepping until current reaches the node holding the target value:

Debugging 30

Data Structures & AlgorithmsCS@VT ©2012 McQuain

At End of removeFirstOccurrenceOf()

Continue stepping through the if statement and examine the list structure right before the

return is executed:

Debugging 31

Data Structures & AlgorithmsCS@VT ©2012 McQuain

List Details

Does the list structure seem to be OK? 2826: list

30

36

37

47

43

53

0

1

4

6

9

Debugging 32

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Buggered List Structure (more detail)

A careful examination indicates that something odd has happened:

OK

??

47

43 4

6

45 5

Apparently the removal method did not correctly reset

the prev pointer in the node after the node that was

removed from the list.

We should check that…

Debugging 33

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Another Error

A careful examination also reveals another bug

Debugging 34

Data Structures & AlgorithmsCS@VT ©2012 McQuain

A Look at the Code

It should be obvious that two

statements are missing from the

given code

Debugging 35

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Testing Again

display of

initial list

display of

list after

deleting 5

display of

list after

reinserting 5

Let's execute the modified program:

Now, the list contents seem to be correct… so, more

testing is in order…

Debugging 36

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Method Breakpoints

method breakpoint halt when execution enters and/or exits a selected method

To set one, just double-click in the editor margin next to the method header:

By default, this causes a break when execution enters the method…

Debugging 37

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Breakpoint View

Go to Window/Show View and open the Breakpoint View.

You can right-click on a selected breakpoint to alter its properties:

Debugging 38

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Breakpoint View Toolbar

1 2 3 4 5 6 7 8 9

1 remove selected breakpoints

2 remove all breakpoints

3 show breakpoints

4 go to file for breakpoint

5 skip all breakpoints

6 expand all (details)

7 collapse all (details)

8 link with the Debug View

9 set a Java exception breakpoint

Debugging 39

Data Structures & AlgorithmsCS@VT ©2012 McQuain

Exception Breakpoints

