You will submit your solution to this assignment to the Curator System (as HW03). Your solution must be either a plain text file (e.g., NotePad) or a typed MS Word document; submissions in other formats will not be graded.

Except as noted, credit will only be given if you show relevant work.

1. [15 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of the body of the following function.
```
public double eval(double[] c, double x) {
    double polyx = c[0]; // 2
    double xToK = x; // 1
    for (int k = 1; k < c.length; k++) { // 1 before, 2 per pass, 1 exit
        polyx = polyx + c[k] * xToK; // 4
        xToK = x * xToK; // 2
    }
    return polyx; // 1
}
```

State both a complexity function $\mathrm{T}(\mathrm{N})$ and the Θ-complexity of $\mathrm{T}(\mathrm{N})$.
From the line-by-line analysis above,

$$
\begin{aligned}
T(N) & =2+1+1+\sum_{k=1}^{N-1}(2+4+2)+1+1 \\
& =\sum_{k=1}^{N-1} 8+6 \\
& =8 N-2
\end{aligned}
$$

If you counted the "dot" operator, you'd get a slightly different answer:

$$
\begin{aligned}
T(N) & =2+1+1+\sum_{k=1}^{N-1}(3+4+2)+2+1 \\
& =\sum_{k=1}^{N-1} 9+7 \\
& =9 N-2
\end{aligned}
$$

And either way, it's clear from the theorems that $T(N)$ is Theta(N).
2. [15 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of the body of the following function.

```
public double eval(double[] c, double x) {
    double polyx = c[0]; // 2
    for (int k = 1; k < c.length; k++) { // 1 before, 2 per pass, 1 exit
        double xToK = x; // 1
        for (int i = 1; i < k; i++) { // 1 before, 2 per pass, 1 exit
            xToK = x * xToK;
                // 2
        }
        polyx = polyx + c[k] * xToK; // 4
    }
    return polyx; // 1
}
```

State both a complexity function $T(N)$ and the Θ-complexity of $T(N)$.

From the line-by-line analysis above,

$$
\begin{aligned}
T(N) & =2+1+\sum_{k=1}^{N-1}\left(2+1+1+\sum_{i=1}^{k-1}(2+2)+1+4\right)+1+1 \\
& =\sum_{k=1}^{N-1}\left(\sum_{i=1}^{k-1} 4+9\right)+5 \\
& =\sum_{k=1}^{N-1}(4 k+5)+5 \\
& =4 \frac{(N-1) N}{2}+5(N-1)+5 \\
& =2 N^{2}+3 N
\end{aligned}
$$

If you counted the "dot" operation to access length, as 1 , then you would get a slightly different result:

$$
\begin{aligned}
T(N) & =2+1+\sum_{k=1}^{N-1}\left(2+1+1+1+\sum_{i=1}^{k-1}(2+2)+1+4\right)+2+1 \\
& =2 N^{2}+4 N
\end{aligned}
$$

And either way, it's clear from the theorems that $T(N)$ is Theta($\left.\mathbf{N}^{\wedge} \mathbf{2}\right)$.
3. [20 points] For each part, determine the simplest possible function $g(n)$ such that the given function is $\Theta(g)$. No justification is necessary, but you might have to do some analysis using the theorems from the notes.
a) $a(n)=14 n^{3}+3 n^{2} \log n$
$a(n)$ is Theta $\left(n^{\wedge} 3\right)$ by Theorem 13 and Theorem 5.
b) $\quad b(n)=3 n \log n+5 n$
$b(n)$ is Theta($n \log n$) by Theorem 13 and Theorem 5 .
c) $c(n)=3 n \log \left(n^{2}\right)+3 n^{2} \log n$

This is not covered by Theorem 5, so you needed to make a guess and apply Theorem 8:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{3 n \log \left(n^{2}\right)+3 n^{2} \log n}{n^{2} \log n} & =\lim _{n \rightarrow \infty}\left(\frac{3 n \log \left(n^{2}\right)}{n^{2} \log n}+\frac{3 n^{2} \log n}{n^{2} \log n}\right)=\lim _{n \rightarrow \infty}\left(\frac{3 \log \left(n^{2}\right)}{n \log n}+3\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{6 \log (n)}{n \log n}+3\right)=\lim _{n \rightarrow \infty}\left(\frac{6}{n}+3\right)=0+3=3
\end{aligned}
$$

So, $c(n)$ is Theta $\left(n^{\wedge} 2 \log n\right)$.
d) $d(n)=n^{2}+2^{n}+3^{n}$
$d(n)$ is Theta $\left(3^{\wedge} n\right)$ by Theorems 13 and 5 again.
e) $e(n)=\frac{n^{2}+2 n+3}{n^{2}}$

This is also not covered by Theorem 5, but Theorem 8 settles the issue if you make the right guess:
$\lim _{n \rightarrow \infty} \frac{\frac{n^{2}+2 n+3}{n^{2}}}{1}=\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+3}{n^{2}}=\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}+\frac{3}{n^{2}}\right)=1$
So, $e(n)$ is Theta(1).
4. [15 points] Suppose that executing an algorithm on input of size N requires executing $T(N)=8 N+\log N$ instructions. How long would it take to execute this algorithm on hardware capable of carrying out 2^{28} instructions per second if $\mathrm{N}=$ 2^{40} ? (Give your answer in hours, minutes and seconds, to the nearest second.)

The number of instructions that the algorithm would execute is given by

$$
T\left(2^{40}\right)=8 \cdot 2^{40}+\log 2^{40}=8 \cdot 2^{40}+40
$$

The number of seconds required is

$$
\frac{T\left(2^{40}\right)}{2^{28}}=\frac{8 \cdot 2^{40}+40}{2^{28}} \approx 8 \cdot 2^{12}=32768
$$

That works out to be about $\mathbf{9}$ hours, $\mathbf{6}$ minutes, $\mathbf{8}$ seconds.
5. [25 points] Design an efficient algorithm for solving the following problem:

Given an array A holding N elements, such that $\mathrm{A}[0]<\mathrm{A}[1]<\mathrm{A}[2]<. \operatorname{c} / \mathrm{A}[\mathrm{N}-1]$, determine whether there is an index k such that $0<=k<=N-1$ and $A[k]=k$.

Write your algorithm as a Java function and state its Θ-complexity.
This can be solved by simply changing the binary search algorithm in the notes. The key insights are:

- if $\mathbf{A}[\mathrm{k}]<\mathrm{k}$ then there cannot be a solution for $\mathbf{i}<k$
- if $\mathbf{A}[k]>k$ then there cannot be a solution for $i>k$

The changes are minimal, and left to you. The complexity is that of binary search, Theta($\log \mathrm{N})$.
6. [10 points] Prove the following:

$$
\text { if } x \text { is a real number then }\lfloor x\rfloor+1=\lfloor x+1\rfloor
$$

proof:

If x is a real number, then there is an integer $k \leq x$ and a real number $0 \leq \alpha<1$ such that $x=k+\alpha$. Therefore

$$
k \leq x<k+1<=k+1+\alpha=x+1<k+2
$$

Now, $k, k+1$ and $k+2$ are consecutive integers, so it's clear that $k=\lfloor x\rfloor$ and $k+1=\lfloor x+1\rfloor$, and therefore

$$
\lfloor x\rfloor+1=k+1=\lfloor x+1\rfloor
$$

