
CS 3114 Data Structures and Algorithms Homework 3: Complexity

 1

You will submit your solution to this assignment to the Curator System (as HW03). Your solution must be either a plain text

file (e.g., NotePad) or a typed MS Word document; submissions in other formats will not be graded.

Except as noted, credit will only be given if you show relevant work.

1. [15 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of

the body of the following function.

 public double eval(double[] c, double x) {

 double polyx = c[0]; // 2

 double xToK = x; // 1

 for (int k = 1; k < c.length; k++) { // 1 before, 2 per pass, 1 exit

 polyx = polyx + c[k] * xToK; // 4

 xToK = x * xToK; // 2

 }

 return polyx; // 1

 }

State both a complexity function T(N) and the Θ-complexity of T(N).

From the line-by-line analysis above,

()
1

1

1

1

() 2 1 1 2 4 2 1 1

8 6

8 2

N

k

N

k

T N

N

−

=

−

=

= + + + + + + +

= +

= −

∑

∑

If you counted the "dot" operator, you'd get a slightly different answer:

()
1

1

1

1

() 2 1 1 3 4 2 2 1

9 7

9 2

N

k

N

k

T N

N

−

=

−

=

= + + + + + + +

= +

= −

∑

∑

And either way, it's clear from the theorems that T(N) is Theta(N).

CS 3114 Data Structures and Algorithms Homework 3: Complexity

 2

2. [15 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of

the body of the following function.

 public double eval(double[] c, double x) {

 double polyx = c[0]; // 2

 for (int k = 1; k < c.length; k++) { // 1 before, 2 per pass, 1 exit

 double xToK = x; // 1

 for (int i = 1; i < k; i++) { // 1 before, 2 per pass, 1 exit

 xToK = x * xToK; // 2

 }

 polyx = polyx + c[k] * xToK; // 4

 }

 return polyx; // 1

 }

State both a complexity function T(N) and the Θ-complexity of T(N).

From the line-by-line analysis above,

()

()

1 1

1 1

1 1

1 1

1

1

2

() 2 1 2 1 1 2 2 1 4 1 1

4 9 5

4 5 5

(1)
4 5(1) 5

2

2 3

N k

k i

N k

k i

N

k

T N

k

N N
N

N N

− −

= =

− −

= =

−

=

= + + + + + + + + + +

= + +

= + +

−
= + − +

= +

∑ ∑

∑ ∑

∑

If you counted the "dot" operation to access length, as 1, then you would get a slightly different result:

()
1 1

1 1

2

() 2 1 2 1 1 1 2 2 1 4 2 1

2 4

N k

k i

T N

N N

− −

= =

= + + + + + + + + + + +

= +

∑ ∑

And either way, it's clear from the theorems that T(N) is Theta(N^2).

CS 3114 Data Structures and Algorithms Homework 3: Complexity

 3

3. [20 points] For each part, determine the simplest possible function g(n) such that the given function is ()gΘ . No

justification is necessary, but you might have to do some analysis using the theorems from the notes.

a)
3 2() 14 3 loga n n n n= +

a(n) is Theta(n^3) by Theorem 13 and Theorem 5.

b) () 3 log 5b n n n n= +

b(n) is Theta(n log n) by Theorem 13 and Theorem 5.

c) ()2 2() 3 log 3 logc n n n n n= +

This is not covered by Theorem 5, so you needed to make a guess and apply Theorem 8:

()2 2 2 2 2

2 2 2

3 log 3 log 3 log() 3 log 3log()
lim lim lim 3

log log log log

6log() 6
lim 3 lim 3 0 3 3

log

n n n

n n

n n n n n n n n n

n n n n n n n n

n

n n n

→∞ →∞ →∞

→∞ →∞

+
= + = +

 = + = + = + =

So, c(n) is Theta(n^2 log n).

d)
2() 2 3n nd n n= + +

d(n) is Theta(3^n) by Theorems 13 and 5 again.

e)

2

2

2 3
()

n n
e n

n

+ +
=

This is also not covered by Theorem 5, but Theorem 8 settles the issue if you make the right

guess:

2

22

2 2

2 3

2 3 2 3
lim lim lim 1 1

1n n n

n n

n nn

n n n→∞ →∞ →∞

+ +
+ + = = + + =

So, e(n) is Theta(1).

CS 3114 Data Structures and Algorithms Homework 3: Complexity

 4

4. [15 points] Suppose that executing an algorithm on input of size N requires executing T(N) = 8N + log N instructions.

How long would it take to execute this algorithm on hardware capable of carrying out 2
28

 instructions per second if N =

2
40

? (Give your answer in hours, minutes and seconds, to the nearest second.)

The number of instructions that the algorithm would execute is given by

40 40 40 40(2) 8 2 log 2 8 2 40T = ⋅ + = ⋅ +

The number of seconds required is

40 40

12

28 28

(2) 8 2 40
8 2 32768

2 2

T ⋅ +
= ≈ ⋅ =

That works out to be about 9 hours, 6 minutes, 8 seconds.

5. [25 points] Design an efficient algorithm for solving the following problem:

Given an array A holding N elements, such that A[0] < A[1] < A[2] < . . . < A[N-1],

determine whether there is an index k such that 0 <= k <= N-1 and A[k] = k.

Write your algorithm as a Java function and state its Θ-complexity.

This can be solved by simply changing the binary search algorithm in the notes. The key insights are:

• if A[k] < k then there cannot be a solution for i < k

• if A[k] > k then there cannot be a solution for i > k

The changes are minimal, and left to you. The complexity is that of binary search, Theta(log N).

6. [10 points] Prove the following:

if is a real number then 1 1x x x+ = +

proof:

If x is a real number, then there is an integer k x≤ and a real number 0 1α≤ < such that

x k α= + . Therefore

1 1 1 2k x k k x kα≤ < + <= + + = + < +

Now, k, k+1 and k+2 are consecutive integers, so it's clear that k x= and 1 1k x+ = + , and

therefore

1 1 1x k x+ = + = +

