CS 3114 Data Structures and Algorithms Homework 3: Complexity

You will submit your solution to this assignment to the Curator System (as HW03). Your solution must be either a plain text
file (e.g., NotePad) or a typed MS Word document; submissions in other formats will not be graded.

Except as noted, credit will only be given if you show relevant work.

1. [15 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of
the body of the following function.

public double eval (double[] c, double x) {

double polyx = c[0]; // 2

double xToK = x; // 1

for (int k = 1; k < c.length; k++) { // 1 before, 2 per pass, 1 exit
polyx = polyx + c[k] * xToK; // 4
XToK = x * xToK; // 2

}

return polyx; // 1

}
State both a complexity function T(N) and the ®-complexity of T(N).

From the line-by-line analysis above,

N-1
T(N)=2+1+1+) (2+4+2)+1+1

k=

—_

If you counted the "dot" operator, you'd get a slightly different answer:

N-1
T(N)=2+1+1+) (3+4+2)+2+1

k=1
N-1
=>9+7
k=1
=9ON -2

And either way, it's clear from the theorems that T(N) is Theta(N).




CS 3114 Data Structures and Algorithms Homework 3: Complexity

2. [15 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of
the body of the following function.

public double eval (double[] ¢, double x) {

double polyx = c[0]; // 2
for (int k = 1; k < c.length; k++) { // 1 before, 2 per pass, 1 exit
double xToK = x; // 1
for (int 1 = 1; 1 < k; i++) { // 1 before, 2 per pass, 1 exit
xXxToK = x * xToK; // 2
}
polyx = polyx + c[k] * xToK; // 4
}
return polyx; // 1

}
State both a complexity function T(N) and the ®-complexity of T(N).

From the line-by-line analysis above,

N-1 k-1
T(N):2+1+Z(2+1+1+Z(2+2)+1+4j+1+1

k=1 i=1

N-1( k-1
=Z(Z4+9j+5
k=1 \ i=1
N-1
(4k+5)+5

k=1

(N-1)N

4 +5(N-1)+5

=2N*+3N

If you counted the "dot" operation to access 1ength, as 1, then you would get a slightly different result:

i=1

N-1 k-1
T(N):2+1+Z(2+1+1+1+Z(2+2)+1+4J+2+1
k=1

=2N*+4N

And either way, it's clear from the theorems that T(N) is Theta(N"2).




CS 3114 Data Structures and Algorithms Homework 3: Complexity

3.

[20 points] For each part, determine the simplest possible function g(n) such that the given function is ®(g). No

justification is necessary, but you might have to do some analysis using the theorems from the notes.

a)

b)

<)

d)

a(n) =14n" +3n’ logn

a(n) is Theta(n”3) by Theorem 13 and Theorem 5.

b(n)=3nlogn+5n
b(n) is Theta(n log n) by Theorem 13 and Theorem 5.

c(n)=3n log(n2 ) +3n’logn
This is not covered by Theorem 5, so you needed to make a guess and apply Theorem 8:

3nlog(n®)+3n’logn 2 2 2
. g( 2) B _ [ 31l08) 30 logn) L (3logr) g
n—eo n”logn e\ p”logn n”logn nlogn

= lim(m+3jzlim(é+3j=0+3:3
n—0 nlogn n—>0 n

So, c(n) is Theta(n"2 log n).

n—»0

din)=n*+2"+3"
d(n) is Theta(3"n) by Theorems 13 and 5 again.

n’+2n+3
e(n)zT

This is also not covered by Theorem 5, but Theorem 8 settles the issue if you make the right
guess:

n’+2n+3

) 2
lim— 2 =23 =lim(1+g+%j=l

n—>0 n—>0 n2 n—»0 n n

So, e(n) is Theta(1).




CS 3114 Data Structures and Algorithms Homework 3: Complexity

4. [15 points] Suppose that executing an algorithm on input of size N requires executing T(N) = 8N + log N instructions.
How long would it take to execute this algorithm on hardware capable of carrying out 27 instructions per second if N =
40 . . .
277? (Give your answer in hours, minutes and seconds, to the nearest second.)

The number of instructions that the algorithm would execute is given by
T(2%*)=8-2% +1og2* =8-2* + 40
The number of seconds required is

T(2") 8-2°+40

= w827 =32768

That works out to be about 9 hours, 6 minutes, 8 seconds.

5. [25 points] Design an efficient algorithm for solving the following problem:

Given an array A holding N elements, suchthat A[0] < A[1] < A[2] < . . . < A[N-1],
determine whether there is an index k suchthat 0 <= k <= N-landA[k] = k.

Write your algorithm as a Java function and state its ®@-complexity.
This can be solved by simply changing the binary search algorithm in the notes. The key insights are:

e if A[K] <k then there cannot be a solution for i <k
e if A[K] > k then there cannot be a solution for i > k

The changes are minimal, and left to you. The complexity is that of binary search, Theta(log N).

6. [10 points] Prove the following:
if x is a real number then | x [+1=| x+1|

proof:

If x is a real number, then there is an integer 4 <x and a real number 0<a <1 such that
x=k+a. Therefore
k<x<k+l<=k+l+a=x+1<k+2

Now, k, k+1 and k+2 are consecutive integers, so it's clear that & =|_x_| and k+1=|_x+1_| , and

therefore
| x|+1=k+1=|x+1]




