CS 3114 Data Structures & Algorithms Minor Project 1: File Navigation

Text File Navigation and Parsing in Java

This assignment involves implementing a smallish Java program that performs some basic file parsing and navigation tasks.

The program will deal with two input files. The first input file, whose name will be supplied from the command line, contains a
collection of data records pertaining to geographical features, obtained from the website for the USGS Board on Geographic
Names (geonames.usgs.gov). The file begins with a descriptive header line, followed by a sequence of GIS records, one per line,
which contain the following fields in the indicated order (all are mandatory unless indicated otherwise):

Significance Type/Format Comments

Feature ID (FID) non-negative integer unique identifier for this geographic feature
Feature name string standard name of feature

Feature class string descriptive classification of feature

State alphabetic code

two-characters

US postal code abbreviation

State numeric code

non-negative integer

numeric code for state

County name

string

county in which feature occurs

County numeric code

non-negative integer

numeric code for county

Primary latitude (DMS)

DDMMSS['N' ['S']

feature latitude in DMS format or UNKNOWN

Primary longitude (DMS)

DDDMMSS['E' | 'W']

feature longitude in DMS format or UNKNOWN

Primary latitude (dec deg)

decimal number

feature latitude in decimal format or UNKNOWN

Primary longitude (dec deg)

decimal number

feature longitude in decimal format or UNKNOWN

Source latitude (DMS)

DDMMSS['N' ['S']

latitude of feature source in DMS format, optional

Source longitude (DMS)

DDDMMSS['E' | 'W']

longitude of feature source in DMS format, optional

Source latitude (dec deg)

decimal number

latitude of feature source in decimal format, optional

Source longitude (dec deg)

decimal number

longitude of feature source in decimal format, optional

Feature elevation in meters integer altitude above/below sea level, optional

Feature elevation in feet integer altitude above/below sea level, optionsl

Map name string name of USGS topographic map including feature
Date created string date feature was initially committed to the database
Date edited string date feature record was last updated

In the GIS record file, each record will occur on a single line, and the fields will be separated by pipe (* | /) symbols. Empty
fields will be indicated by a pair of pipe symbols with no characters between them. See the posted VA_Monterey . txt file for
many examples.

GIS record files are guaranteed to conform to this syntax, so there is no explicit requirement that you validate the files. On the
other hand, some error-checking during parsing may help you detect errors in your parsing logic.

The bytes that make up the file can be thought of as a sequence of bytes, each at a unique offset from the beginning of the file,
just like the cells of an array. So, each GIS record begins at a unique offset from the beginning of the file.

Note:

Each line of a text file ends with a particular marker (known as the line terminator). In MS-DOS/Windows file systems, the line
terminator is a sequence of two ASCII characters (CR + LF). In Unix systems, the line terminator is a single ASCII character
(LF). Other systems may use other line termination conventions.

Why do you care? Which line termination is used has an effect on the file offsets for all but the first record in the data file. As
long as we’re all testing with files that use the same line termination, we should all get the same file offsets. But if you change
the file format (of the posted data files) to use different line termination, you will get different file offsets than are shown in the
posted log files. Most good text editors will tell you what line termination is used in an opened file, and also let you change that.

Last revision: May 22, 2013 1

Minor Project 1: File Navigation

CS 3114 Data Structures & Algorithms

16L61/82/6013S Aox93uoW|0€TEIFG6 | |11 1LPGLLS 6L-1G8LTBTE 8EIMEERE6L0INGO6T8EIT60IPURTUDTH| TG |VAINIRA|RDIY Juswsbeuey SITTPTTM PURTUBTH|66078FT
0T0Z/ST/6016L61/82/6014K2193U0K|$882Z16L81 1 111€€€68LG 6L—1L8ETLOY 8EIMPPPEGLOINICHZ8EIT60|PURTUDBTH| TG |VA|ITOOUDS|TOOYDS UDTH PUBTUDTHI|L60H8YT
16L61/82/601dS Aox23uoW|00L21€28 111111669819 6L~1LL9G76C 8EIMLOLEGLOINOYLTISEITE0IPURTUDTHITGIVAIYDINYD | TodeyD UOITTWRH|9T6E8YT
16L61/82/60|A2193u0n | 00€€1900TI I 11189FGLTS 6L-19€9GF6F 8EIMEOTEGLOINOY6Z8EIT60IPURTUBTHI TG | VYAl ITUUNS|[UTLIUNOK JTND[098€E8YT
16L6T/82/6014&219qu0K|602€18L61 11 11LPSL2G"6L-1GL908F 8EIMEETE6L0INOGEZ8EIT60IPUBTULTH| TS| YAl ITUWNG |UTRIUNOK DUSSUTD|LFIE8TT

16L6T/82/601A2393UOK | 65521 08LIT8EFTOG 6L

—1G8ZZTISS 8EIMIFEECH6LOINFOEEBE|8GZ8ZSS 6L~ FFLTIB6% 8EIMOTEE6L0INEGHZBE|T60 I PURTUDTH| TG | VA WesIls | uny Yuead| . zGe8hT

16L61/82/60142193u0| €T1€ZI1G0LI|111GL5980G°6L—1LTEZ8F 8ECIMIE0E6L0IN9G8Z8EIT60IPURTUBTH| TG VA|STROOT|SI93eM JO SYIOI|Z6HERYT
16L61/82/601A9393UOK | #8¥Z | LSLILZ0O9GTS 6L

—1G819225 " 8€1MIG0E6LOINTZTESE | CI9ERTES 6L—|7ZGPE6Y " 8EIMESTEGLOINIEGZBE|T60 I PURTUDTH| TG | VA lwesI3s|uny JTH| 182E8FT

16L61/82/6013S

ASI93UOK | ZL6TIT091222L78G 6L—1L99T6%E 8EIMG0GE6LOINLGOZBEITLILYTS 6L—1E06L90€ 8EIMESOE6L0INFZBTBEIT60IPURTUDTH| TG | VA lWesI3S|uny STARA|0G628F T
16L61/82/6014S

A2I193UOK | 006TI16LGIE€EEB0LG 6L—IGLTE 8EIMGTHEGLOINEO6TBEIHE682S 6L—18T07G8Z 8EIMPPTE6LOINLOLTBEIT60IPURTUBTH| TG | VA|lWeSI3S|Uny qeId|G8LZ8YT
16L6T/82/6013dS A2393UOK|088T|ELS1L9999GS 6L

— 16262 8EIMPZEE6L0INEELTBEIEPE6ERS 6L—1TZ0P0LZ 8EIMBEZE6LOINETITSEIT60 I PURTUDTHI TS IVAIASTTRAIMOTTOH YOTTARTDILGGZ8YT
16L61/82/601£9393U0K|9€GZIE€LLI ||| ITLEYISS 6L—IPPLTIB6Y 8EIMEZECELOINES6ZBEIT60IPURTUDTH|TSIVAIUDINYD|YDINYD TRIFUSD | HEFZBYT
16L6T/82/6013dS A2393UOK| 0622186911 111289L%79G°6L—-166L9G9C " 8€IMESEE6L0INISSTI8EIT60IPURTUDTHI TG IVAIITUUNG [STATIRD JUNOW| HZEZ8H T
16L6T/82/601A2193UOK|Z28L218%816888E6G5 6L

—18LLZSZh 8EIMBEGEELOINTEGZBE I PPTC69G 6L—1€LBZ6TY 8EIM60FE6L0INGOGZBE|T60IPURTUDTH TG | VA lWeSIlS |Uny sa2uang|9.L1Z8hT

16L6T/82/6013S A2393UOK | T6ZE1€00T I |11 1LLST99G 6L—12ZSPELTE " 8EIMBSEE6L0INZ06T8EIT60IPURTUDTHITSIVAIITWUNS | TTTH ¥ONnd|0TTZ8YT
16L6T/82/601A2393UOK| 06721 6GLIEEBEEE9 6L

- 160€LEEY "8EIMO08EGLOINTO9Z8E|Z6F6€S 6L—1GHLT86% " 8CIMZTZE6LOINES6CBEIT60IPURTUDTHITG|VAIASTTRAlASTTRA SSeabanTd|8L8T8YT

16L61/82/60|A2193UON|67G2|LLLINI1120LL67G 6L-188TT00G 8E€IM6GZE6LOINOOOEGEITHOIPUBRTUDTHIIG|YAISDRTd pojeTndog|ssed anTd|zG818%T
16L6T/82/6014&2199U0K| 58921818111 11L08EEGS 6L-1T86ESEY " 8EIMZTEEC6L0INLO9ZBEITE0IPURTULTH] TS |VAIYDINYD|y2anyd AINgSY|GHET8HT
0T0Z/ST/6016L6T/82/60 123 0urod|090TleZEl | |11L98GG€6°6L

— 1 €GLEGTE " LEIMBO9S6LOINIOGTLEIOLLI (A3TD) o3 OUROY| TG |VA|ITOOUDS | TOOYDS AxejusweTd ASISJUOW|9TT6LYT
AEIIAE FIVAIQEIVEYD FIVA|HIWYN dVIWI|I14 NITAHTHIW NI AZTHIDEA HONOT EDUNOS | DHA IV¥T dD¥N0S | SWA HNOT dED¥N0S | SWA IVT dDd¥00S|DEd 9
NOT WI¥dIDHEA IVT WIY¥d|SWA DONOT WI¥d|SWA IVT AYVWIEd|DI¥IWAN AINAOD | HWYN XINAOD | DIYIWAN HIVIS|VYHATY HAIVISI|ISSVYID HINIVEA | EWYN HINIVEA|dI™ Z¥NIVHS

(]
15)

wE E.,

=i B

< < Hm

— 0 R
s S = er
© S A
(a] B = D
“m © o . Q<
o 22= s W

8 ® o z 7 ™
m »n > O g -
o)) dnf o O o
o T 0.2 = > N
o 29 =2 ~
o s ®2 3 s N
o 5825 Ex >
— [S] s (%) = < (]
o 0.2 L g =
m O = S w

0 O = = ..
© £ 58 =g c
» SSE ¥ o
..s Sne mom .B
Q.AU s 0° o ku.% >
°F =23 233 :
29 £:z. 832 B
— —_ (]
Py Z<=s& <<28 4

CS 3114 Data Structures & Algorithms Minor Project 1: File Navigation

The second input file, whose name will also be supplied on the command line, contains a sequence of search commands that
must be processed. The only types of search that must be supported are:

show_name<tab><offset>

If the offset is valid (see below), write the Feature Name for the record that occurs at that offset to the output log file. If
the offset is not positive, write the error message “Offset is not positive.” to the log file.

If the offset is larger than the final valid offset within the data file, write the error message “Offset too large.” to the log
file.

If the offset is non-negative but does not correspond to the first character on a line of the file, write the error message
“Unaligned offset.” to the log file.

show_coordinates<tab><offset>

If the offset is valid (see below), write the primary latitude and primary longitude for the record that occurs at that offset
to the output log file. The specified fields should be separated by whitespace (your choice as to what). See the posted
logs for any additional formatting requirements.

If the offset is not positive, write the error message “Offset is not positive.” to the log file.

If the offset is larger than the final valid offset within the data file, write the error message “Offset too large.” to the log
file.

If the offset is non-negative but does not correspond to the first character on a line of the file, write the error message
“Unaligned offset.” to the log file.

show_class<tab><offset>

If the offset is valid (see below), write the Feature Class for the record that occurs at that offset to the output log file.

If the offset is not positive, write the error message “Offset is not positive.” to the log file.

If the offset is larger than the final valid offset within the data file, write the error message “Offset too large.” to the log
file.

If the offset is non-negative but does not correspond to the first character on a line of the file, write the error message
“Unaligned offset.” to the log file.

The only other command is:
quit<tab>

Cease processing the commands file, log the message “Exiting.”, close all files and exit the program.
Each command will occur on a line by itself. Lines beginning with a semi-colon character *; ’ are comments and should be
ignored. The command file is guaranteed to conform to this specification, so you do not need to worry about error-checking
when reading it. See the posted command files for examples.
The program will write results to a single output file, named Results.txt. Each line of output must be properly terminated.
When your program begins execution, it will parse the given GIS record file and report the file offset and FID field for each of
the records found in the file, listed in the order the records occur in the file. This section of the output file will consist of a
header, followed by one line for each GIS record containing the file offset, followed by some whitespace (your choice as to
what), followed by the FID for that GIS record, and then a newline character. See the posted log files for examples.
Your program will then process the given commands file. Each command must be echoed into the log file, on a line by itself,
numbered as shown in the posted log files. Following each echoed command, your program will write one line reporting the

results of carrying out that command, as described above.

Under no circumstances may your program store more than one GIS record in memory at any given instant.

Last revision: May 22, 2013 3

CS 3114 Data Structures & Algorithms Minor Project 1: File Navigation

Testing:

It is your responsibility to design and conduct thorough and sensible tests of your implementation before submitting it. For that
purpose, you may share test input and output files (but absolutely no solution code!!) via the class Forum. You should not use
the Curator for your own testing and debugging purposes. The curator will only accept a limited number of submissions by each
student, so use them wisely for locking in your grades.

Correctness Evaluation:

You should document your implementation in accordance with the Programming Standards page on the course website. It is
possible that your implementation will be evaluated for documentation, as well as for correctness of results. If so, your
submission that achieved the highest score will be evaluated by one of the TAs, who will assess a deduction (ideally zero)
against your score from the Curator.

Note that the evaluation of your project may depend substantially on the quality of your code and documentation.

Design Evaluation:

You should apply good object-oriented design principles in your project. Think through object responsibilities and interactions,
and sketch out your design before you start coding. The most common design shortcomings with an assignment like this are to
identify a too-small set of candidate classes, or to adopt a minimal design in order to reduce coding time. As inspiration, I will
tell you that my solution incorporates 8 distinct classes and 2 enumerated types, all of which play important roles within the
requirements of the assignment.

Keep in mind that later projects in this course may build on this one. For example, it is likely that in a later project some other
part of the GIS database system will need to actually do something with various fields of the GIS records that are retrieved in this

assignment.

In order to encourage you to take the design of this program seriously, we will treat the evaluation of your design as a homework
assignment.

What to turn in and how:

This assignment will be auto-graded on the Curator system. The testing will be done under Windows (which should not matter
at all) using Java version 1.6.21 or later.

Submit a single uncompressed jar file (not a zip or RAR or other compressed format) containing the source code for your
solution to the Curator System. Submit nothing else. Your solution should not write anything to standard output (i.e.,

System.out inJava).

Your source code submission for this assignment must be “flat”. That is, you must not place code in subdirectories or use Java
packages. Doing so will ensure that your submitted code does not compile.

If you have installed the JDK on your system, you can create the necessary jar file by executing a command like
jar —cvf MySubmissionFile.jar *.java

in the directory containing your java files. If not, you can create a suitable jar file from Eclipse; see the website for more
information.

Your main class (the one that implements public static void main ()) must be named Projectl. If not, your
submitted code will fail to execute properly. We will execute your program using the following syntax:

java Projectl <GIS record file name> <commands file name>

Last revision: May 22, 2013 4

CS 3114 Data Structures & Algorithms Minor Project 1: File Navigation

If you execute your program from within Eclipse, you can still specify command-line parameters; see the Eclipse for 3114 notes
for an example.

Instructions, and the appropriate link, for submitting to the Curator are given in the Student Guide at the Curator website:

http://www.cs.vt.edu/curator/.

You will be allowed to submit your solution multiple times, up to a limited number as indicated in the Curator system; the
highest score will be counted.

Pledge:

Each of your program submissions must be pledged to conform to the Honor Code requirements for this course. Specifically,
you must include the following pledge statement at the beginning of the file that contains main () :

// On my honor:

//

// - I have not discussed the Java language code in my program with
// anyone other than my instructor or the teaching assistants

// assigned to this course.

//

// — I have not used Java language code obtained from another student,
// or any other unauthorized source, either modified or unmodified.
//

// - If any Java language code or documentation used in my program
// was obtained from another source, such as a text book or course
// notes, that has been clearly noted with a proper citation in

// the comments of my program.

//

// - I have not designed this program in such a way as to defeat or
// interfere with the normal operation of the Curator System.

//

// <Student's Name>

We reserve the option of assigning a score of zero to any submission that does not contain this statement.

Last revision: May 22, 2013 5

