B Graphs Graph Structures 1

A graph G consists of a set V of vertices and a set E of pairs of distinct vertices from V.
These pairs of vertices are called edges.

If the pairs of vertices are unordered, G 1s an undirected graph. If the pairs of vertices are
ordered, G 1s a directed graph or digraph.

K} gi iy :
Atreeis ;’gﬁ}
a graph. O

An undirected graph. A directed graph.

CS@VT Data Structures & Algorithms ©2000-2009 McQuain



Undirected Graph Terminology Graph Structures 2

An undirected graph G, where:

=

V={ab,c,d,efqg,h,i}

E={{a, b}, {a, c}, {b, e}, {b, h}, {b, i},
{c,d},{c,e},{e,f},{e a},{h i}}

@®

e ={c,d} is an edge, incident upon the
verticescand d

(&)
i
&

Two vertices, x and y, are adjacent if {x, y} is an edge (in E).

A path in G is a sequence of distinct vertices, each adjacent to the next.

A path is simple if no vertex occurs twice in the path.

A cycle in G is a path in G, containing at least three vertices, such that the last vertex in
the sequence is adjacent to the first vertex in the sequence.

CS@VT Data Structures & Algorithms ©2000-2009 McQuain



™ Undirected Graph Terminology Graph Structures 3

A graph G is connected if, given any two

vertices x and y in G, there is a path in G

with first vertex x and last vertex y.

The graph on the previous slide is

connected. f

that a maximal connected set of vertices is a
component of G.

If a graph G is not connected, then we say /@

CS@VT Data Structures & Algorithms ©2000-2009 McQuain



Directed Graph Terminology Graph Structures 4

The terminology for directed graphs is @

only slightly different. .. //’

e =(c,d) isanedge,fromctod

A directed path in a directed graph G is a

sequence of distinct vertices, such that @/ /

there is an edge from each vertex in the

sequence to the next.
A directed graph G is weakly connected if, the undirected graph obtained by suppressing
the directions on the edges of G is connected (according to the previous definition).

A directed graph G is strongly connected if, given any two vertices x and y in G, there is a
directed path in G from x to y.

CS@VT Data Structures & Algorithms ©2000-2009 McQuain



B Adjacency Matrix Representation Graph Structures 5

A graph may be represented by a two-
dimensional adjacency matrix:

If G has n = |V| vertices, let M be an
n by n matrix whose entries are
defined by

1 1f (1, j)1s an edge

g

m. =
710 otherwise ]

M(G)=

S O O O O o = O O
S = O O = O O O =
S O O O O O O o =
S O O O O o = O O
S O O = O O = = O
S O O O O O o o O
S O O O = O O O O
S O O O O O O = O
S O O O O O O = O

CS@VT Data Structures & Algorithms ©2000-2009 McQuain



B Adjacency Matrix Representation Graph Structures 6

The adjacency table:
- O(1) to determine existence of a specific edge
- O(|V/]?) storage cost (cut cost by 75% or more by changing types)
- O( |V]) for finding all vertices accessible from a specific vertex
- O(1) to add or delete an edge
- Not easy to add or delete a vertex; better for static graph structure.

- Symmetric matrix for undirected graph; so half is redundant then.

0N\l 1 0 000 0 0
0 0NO 0 1 00 1 1
1 0 0N\0 1 00 00
000 0\N0 00 0 0
M(@G)=|0 1 0 0 0NO 1 0 0
0000 1 0\NO 0 O
000000 O\NO O
010000 0 0O\
00000000 0

CS@VT Data Structures & Algorithms ©2000-2009 McQuain



| Adjacency Table Representation Graph Structures 7

A slightly different approach is to represent

only the adjacent nodes in the structure: (1)
®
1 2
0O 3 4 @

CS@VT Data Structures & Algorithms ©2000-2009 McQuain

c0 N oo 00 0 W N +—» O
=
»



B Adjacency List Representation Graph Structures 8

The adjacency list structure is simply a @
linked version of the adjacency table:

©

()
0 > 1 > 2 ° /

1 > 0 > 4 > 5 ° @
2 > 0 > 3 |oe

3 > 2 |e

4 > 1 > 5 |

5 > 1 > 4 |

%

Array of linked lists, where list nodes store node labels for neighbors.

CS@VT Data Structures & Algorithms ©2000-2009 McQuain



I Adjacency List Representation Graph Structures 9

The adjacency list structure:
- Worst case: O(|V]) to determine existence of a specific edge
- O( |V]| + |E|) storage cost
- Worst case: O(|V|) for finding all neighbors of a specific vertex
- Worst case: O(|V]) to add or delete an edge

- Still not easy to add or delete a vertex; however, we can use a linked list in
place of the array.

0 > 1 > 2 °
1 > 0 > 4 > 5 °
Note, for an undirected
graph, the upper bound on 2 > 0 > 3 °
the number of edges is:
EI < [VI(VI-1) : 22 |-
So, the space comparison 4 > 1 > 5 | o
with the adjacency matrix
scheme is not trivial. 5 > 1 > 4 °

CS@VT Data Structures & Algorithms ©2000-2009 McQuain



I An Adjacency Matrix Class Graph Structures 10

public class Adj Matrix {

private int nunmVertices;
private boolean[] Marker; [/ used for vertex marking
private int[][] Edge; /1l Edge[i1][j] == 21 iff (i,]) exists

public Adj Matrix(int nunV) {...}

publ i ¢ bool ean addEdge(int Src, int Trm {...}
publ i c bool ean del Edge(int Src, int Trm {.. 2
publ i ¢ bool ean hasEdge(int Src, int Trm) {..]|firstNeighbor() returns
the first vertex adjacent to
public int firstNeighbor(int Src) {...} =7 G
public int nextNeighbor(int Src, int Prev) {...}

publ i c bool ean isMarked(int V) {...} next Nei ghbor () returns
public boolean Mark(int V) {...} thﬁ-nﬁ)-(t vc(e;tex, atf:erspr ev,
publ i ¢ bool ean unMark(int V) {...} Wwhich Is adjacent fo > €

public void Cear() {...} /| erase edges and vertex nmarks
public void Display() {...}

CS@VT Data Structures & Algorithms ©2000-2009 McQuain



