
Buffer Pools

Data Structures & Algorithms

1

CS@VT ©2000-2009 McQuain

Locality of Reference

Spatial Locality of Reference

In many cases, if a program accesses one part of a file, there is a high

probability that the program will access nearby parts of the file in the near

future.

Temporal Locality of Reference

In many cases, if a program accesses one part of a file, there is a high

probability that the program will access the same part of the file again in the

near future.

In view of the previous slide, it makes sense to design programs so that data is read from

and written to disk in relatively large chunks… but there is more.

Moral: grab a larger chunk than you immediately need.

Moral: once you’ve grabbed a chunk, keep it around.

Buffer Pools

Data Structures & Algorithms

2

CS@VT ©2000-2009 McQuain

Buffer Pools

buffer pool a series of buffers (memory locations) used by a program to cache disk

data

A program that does much disk I/O can often improve its performance by employing a

buffer pool to take advantage of locality of reference.

Basically, the buffer pool is just a collection of data chunks. The program reads and

writes data in buffer-sized chunks, storing newly-read data chunks into the pool,

replacing currently stored chunks as necessary.

Executing process +

Disk Controller

disk read request

served disk data

Buffer

Pool

0 data01

1 data43

2 data05

3

����

data request

Buffer Pools

Data Structures & Algorithms

3

CS@VT ©2000-2009 McQuain

Replacement Strategies

The buffer pool must be organized physically and logically.

The physical organization is generally an ordered list of some sort.

The logical organization depends upon how the buffer pool deals with the issue of

replacement — if a new data chunk must be added to the pool and all the buffers are

currently full, one of the current elements must be replaced.

If the replaced element has been modified, it (usually) must be written back to disk or

the changes will be lost. Thus, some replacement strategies may include a consideration

of which buffer elements have been modified in choosing one to replace.

Some common buffer replacement strategies:

FIFO (first-in is first-out) organize buffers as a queue

LFU (least frequently used) replace the least-accessed buffer

LRU (least recently used) replace the longest-idle buffer

Buffer Pools

Data Structures & Algorithms

4

CS@VT ©2000-2009 McQuain

FIFO Replacement

Logically the buffer pool is treated as a queue:

Takes no notice of the

access pattern exhibited by

the program. Consider

what would happen with

the sequence:

655

289

655

393

655

127

655

781

. . .

655: 655 miss
289: 655 289 miss
586: 655 289 586 miss
289: 655 289 586 hit
694: 655 289 586 694 miss
586: 655 289 586 694 hit
655: 655 289 586 694 hit
138: 655 289 586 694 138 miss
289: 655 289 586 694 138 hit
694: 655 289 586 694 138 hit
289: 655 289 586 694 138 hit
694: 655 289 586 694 138 hit
851: 289 586 694 138 851 miss
586: 289 586 694 138 851 hit
330: 586 694 138 851 330 miss
289: 694 138 851 330 289 miss
694: 694 138 851 330 289 hit
331: 138 851 330 289 331 miss
289: 138 851 330 289 331 hit
694: 851 330 289 331 694 miss

Number of accesses: 20
Number of hits: 10
Number of misses: 10
Hit rate: 50.00

Buffer Pools

Data Structures & Algorithms

5

CS@VT ©2000-2009 McQuain

LFU Replacement

For LFU we must maintain an access count for each element of the buffer pool. It is

also useful to keep the elements sorted by that count.

655: (655, 1) miss
289: (655, 1) (289, 1) miss
586: (655, 1) (289, 1) (586, 1) miss
289: (289, 2) (655, 1) (586, 1) hit
694: (289, 2) (655, 1) (586, 1) (694, 1) miss
586: (289, 2) (586, 2) (655, 1) (694, 1) hit
655: (289, 2) (586, 2) (655, 2) (694, 1) hit
138: (289, 2) (586, 2) (655, 2) (694, 1) (138, 1) miss
289: (289, 3) (586, 2) (655, 2) (694, 1) (138, 1) hit
694: (289, 3) (586, 2) (655, 2) (694, 2) (138, 1) hit
289: (289, 4) (586, 2) (655, 2) (694, 2) (138, 1) hit
694: (289, 4) (694, 3) (586, 2) (655, 2) (138, 1) hit
851: (289, 4) (694, 3) (586, 2) (655, 2) (851, 1) miss
586: (289, 4) (694, 3) (586, 3) (655, 2) (851, 1) hit
330: (289, 4) (694, 3) (586, 3) (655, 2) (330, 1) miss
289: (289, 5) (694, 3) (586, 3) (655, 2) (330, 1) hit
694: (289, 5) (694, 4) (586, 3) (655, 2) (330, 1) hit
331: (289, 5) (694, 4) (586, 3) (655, 2) (331, 1) miss
289: (289, 6) (694, 4) (586, 3) (655, 2) (331, 1) hit
694: (289, 6) (694, 5) (586, 3) (655, 2) (331, 1) hit

Number of accesses: 20
Number of hits: 12
Number of misses: 8
Hit rate: 60.00

Aside from cost of

storing and

maintaining counter

values, and searching

for least value,

consider the sequence:

655 (500 times)

289 (500 times)

100

101

102

103

. . .

Buffer Pools

Data Structures & Algorithms

6

CS@VT ©2000-2009 McQuain

LRU Replacement

With LRU, we may use a simple list structure. On an access, we move the targeted

element to the front of the list. That puts the least recently used element at the tail of the

list.

Consider what would

happen with the

sequence:

655

289

655

301

302

303

304

289

. . .

655: 655 miss
289: 289 655 miss
586: 586 289 655 miss
289: 289 586 655 hit
694: 694 289 586 655 miss
586: 586 694 289 655 hit
655: 655 586 694 289 hit
138: 138 655 586 694 289 miss
289: 289 138 655 586 694 hit
694: 694 289 138 655 586 hit
289: 289 694 138 655 586 hit
694: 694 289 138 655 586 hit
851: 851 694 289 138 655 miss
586: 586 851 694 289 138 miss
330: 330 586 851 694 289 miss
289: 289 330 586 851 694 hit
694: 694 289 330 586 851 hit
331: 331 694 289 330 586 miss
289: 289 331 694 330 586 hit
694: 694 289 331 330 586 hit

Number of accesses: 20
Number of hits: 11
Number of misses: 9
Hit rate: 55.00

Buffer Pools

Data Structures & Algorithms

7

CS@VT ©2000-2009 McQuain

Measuring Performance

The performance of a replacement strategy is commonly measured by its fault rate, i.e.,

the percentage of requests that require a new element to be loaded into the pool.

Some observations:

- faults will occur unless the pool contains the entire collection of data objects that are

needed (the working set)

- which data objects are needed tends to change over time as the program runs, so the

working set varies over time

- if the buffer pool is too small, it may be impossible to keep the current working set

resident (in the buffer pool)

- if the buffer pool is too large, the program will waste memory

Buffer Pools

Data Structures & Algorithms

8

CS@VT ©2000-2009 McQuain

Comparison

None of these replacement strategies, or any other feasible one, is best in all cases.

All are used with some frequency.

Intuitively, LRU and LFU make more sense than FIFO.

The performance you get is determined by the access pattern exhibited by the running

program, and that is often impossible to predict.

Belady’s optimal replacement strategy:

replace the element whose next access lies furthest in the future

Sometimes stated as “replace the element with the maximal forward distance”.

Requires knowing the future, and so is impossible to implement.

Does suggest considering predictive strategies.

Buffer Pools

Data Structures & Algorithms

9

CS@VT ©2000-2009 McQuain

Buffer Pool Design

There are some general properties a good buffer pool will have:

- the buffer size and number of buffers should be client-configurable

- the buffer pool may deal only in "raw bytes"; i.e., not know anything at all about

the internals of the data record format used by the client code

OR

the buffer pool may deal in interpreted data records, parsed from the file and

transformed into an object

- if records are fixed-length then each buffer should hold an integer number of

records; for variable-length records, things are more complex and it is often

necessary for buffers to allow some internal fragmentation

- empirically, a program using a buffer pool is considered to be achieving good

performance if less than 10% of the record references require loading a new record

into the buffer pool

