
CS 3114 Data Structures and Algorithms Homework 2: Complexity

 1

You will submit your solution to this assignment to the Curator System (as HW02). Your solution must be either a plain text

file (e.g., NotePad) or a typed MS Word document; submissions in other formats will not be graded.

Except as noted, credit will only be given if you show relevant work.

1. [15 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of

the body of the following function.

 public double eval(double[] c, double x) {

 double polyx = c[0]; // 2

 for (int k = 1; k < c.length; k++) { // 1 before, 2 per pass, 1 exit

 double xToK = x; // 1

 for (int i = 1; i < k; i++) { // 1 before, 2 per pass, 1 exit

 xToK = x * xToK; // 2

 }

 polyx = polyx + c[k] * xToK; // 4

 }

 return polyx; // 1

 }

State both a complexity function T(N) and the Θ-complexity of T(N).

From the line-by-line analysis above,

()

()

1 1

1 1

1 1

1 1

1

1

2

() 2 1 2 1 1 2 2 1 4 1 1

4 9 5

4 5 5

(1)
4 5(1) 5

2

2 3

N k

k i

N k

k i

N

k

T N

k

N N
N

N N

− −

= =

− −

= =

−

=

 
= + + + + + + + + + + 

 

 
= + + 

 

= + +

−
= + − +

= +

∑ ∑

∑ ∑

∑

If you counted the "dot" operation to access length, as 1, then you would get a slightly different result:

()
1 1

1 1

2

() 2 1 2 1 1 1 2 2 1 4 2 1

2 4

N k

k i

T N

N N

− −

= =

 
= + + + + + + + + + + + 

 

= +

∑ ∑

And either way, it's clear from the theorems that T(N) is Theta(N^2).

CS 3114 Data Structures and Algorithms Homework 2: Complexity

 2

2. [15 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of

the body of the following function.

 public double eval(double[] c, double x) {

 double polyx = c[0]; // 2

 double xToK = x; // 1

 for (int k = 1; k < c.length; k++) { // 1 before, 2 per pass, 1 exit

 polyx = polyx + c[k] * xToK; // 4

 xToK = x * xToK; // 2

 }

 return polyx; // 1

 }

State both a complexity function T(N) and the Θ-complexity of T(N).

From the line-by-line analysis above,

()
1

1

1

1

() 2 1 1 2 4 2 1 1

8 6

8 2

N

k

N

k

T N

N

−

=

−

=

= + + + + + + +

= +

= −

∑

∑

Again, if you counted the "dot" operator, you'd get a slightly different answer:

()
1

1

1

1

() 2 1 1 3 4 2 2 1

9 7

9 2

N

k

N

k

T N

N

−

=

−

=

= + + + + + + +

= +

= −

∑

∑

And either way, it's clear from the theorems that T(N) is Theta(N).

CS 3114 Data Structures and Algorithms Homework 2: Complexity

 3

3. [20 points] For each part, determine the simplest possible function g(n) such that the given function is ()gΘ . No

justification is necessary, but you might have to do some analysis using the theorems from the notes.

a)
2() 14 3 loga n n n n= +

2() is () by Theorem 13a n nθ

b)
2() 3 logb n n n=

2

2

2

() is (log) by Theorem 8 and

3 log
limit limit 3 3

logn n

b n n n

n n

n n

θ

→∞ →∞
= =

c)
2 2() 3 log 3 logc n n n n n= +

2

2 2

2

() is (log) by Theorem 8 and

3 log 3 log 3log
limit limit 3

log

3 / ln 2
3 limit 3 0 3

1

n n

n

c n n n

n n n n n

n n n

n

θ

→∞ →∞

→∞

+  = + 
 

= + = + =

d)
2() 10 2nd n n= +

2 2

2

() is (2) by Theorem 8 and

10 2 10
limit limit 1

2 2

20 20
1 limit 1 limit 1

2 ln 2 2 ln 2

n

n

n n
n n

n n
n n

d n

n n

n

θ

→∞ →∞

→∞ →∞

 +
= + 

 

= + = + =

e)

2 2 3
()

n n
e n

n

+ +
=

2 2

2

2

() is () by Theorem 8 and

(2 3) / 2 3
limit limit

2 3
limit 1 1

n n

n

e n n

n n n n n

n n

n n

θ

→∞ →∞

→∞

+ + + +
=

 = + + = 
 

CS 3114 Data Structures and Algorithms Homework 2: Complexity

 4

4. [15 points] Suppose that executing an algorithm on input of size N requires executing T(N) = N

log N + 16N instructions.

How long would it take to execute this algorithm on hardware capable of carrying out 2
22

 instructions per second if N =

2
30

? (Give your answer in hours, minutes and seconds, to the nearest second.)

The number of instructions that the algorithm would execute is given by

30 30 30 30 30 30 30(2) 2 log 2 16 2 30 2 16 2 46 2T = + ⋅ = ⋅ + ⋅ = ⋅

The number of seconds required is

30 30

8

22 22

(2) 46 2
46 2 11776

2 2

T ⋅
= = ⋅ =

That works out to be 3 hours, 16 minutes, 16 seconds.

5. [25 points] Design an efficient algorithm for solving the following problem:

Given an array A holding N elements, such that A[0] < A[1] < A[2] < . . . < A[N-1],

determine whether there is an index k such that 0 <= k <= N-1 and A[k] = k.

Write your algorithm as a Java function and state its Θ-complexity.

This can be solved by simply changing the binary search algorithm in the notes. The key insights are:

• if A[k] < k then there cannot be a solution for i < k

• if A[k] > k then there cannot be a solution for I > k

The changes are minimal, and left to you. The complexity is that of binary search, Theta(log N).

6. [10 points] Prove the following:

if is a real number then 1 1x x x+ = +      

proof:

If x is a real number, then there is an integer k such that k < x <= k + 1, and by definition

x k=  

But then, k + 1 < x + 1 <= k + 2, so

1 2 1 1 1x k k x+ = + = + + = +      

