You will submit your solution to this assignment to the Curator System (as HW02). Your solution must be either a plain text file (e.g., NotePad) or a typed MS Word document; submissions in other formats will not be graded.

Except as noted, credit will only be given if you show relevant work.

1. [15 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of the body of the following function.
```
public double eval(double[] c, double x) {
    double polyx = c[0]; // 2
    for (int k = 1; k < c.length; k++) { // 1 before, 2 per pass, 1 exit
        double xToK = x; // 1
        for (int i = 1; i < k; i++) { // 1 before, 2 per pass, 1 exit
            xToK = x * xToK; // 2
        }
        polyx = polyx + c[k] * xTok; // 4
    }
    return polyx; // 1
}
```

State both a complexity function $T(N)$ and the Θ-complexity of $T(N)$.
From the line-by-line analysis above,

$$
\begin{aligned}
T(N) & =2+1+\sum_{k=1}^{N-1}\left(2+1+1+\sum_{i=1}^{k-1}(2+2)+1+4\right)+1+1 \\
& =\sum_{k=1}^{N-1}\left(\sum_{i=1}^{k-1} 4+9\right)+5 \\
& =\sum_{k=1}^{N-1}(4 k+5)+5 \\
& =4 \frac{(N-1) N}{2}+5(N-1)+5 \\
& =2 N^{2}+3 N
\end{aligned}
$$

If you counted the "dot" operation to access length, as 1 , then you would get a slightly different result:

$$
\begin{aligned}
T(N) & =2+1+\sum_{k=1}^{N-1}\left(2+1+1+1+\sum_{i=1}^{k-1}(2+2)+1+4\right)+2+1 \\
& =2 N^{2}+4 N
\end{aligned}
$$

And either way, it's clear from the theorems that $T(N)$ is Theta($\left.\mathbf{N}^{\wedge} \mathbf{2}\right)$.
2. [15 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of the body of the following function.

```
public double eval(double[] c, double x) {
    double polyx = c[0]; // 2
    double xToK = x; // 1
    for (int k = 1; k < c.length; k++) { // 1 before, 2 per pass, 1 exit
        polyx = polyx + c[k] * xToK; // 4
        xToK = x * xToK; // 2
    }
    return polyx; // 1
}
```

State both a complexity function $\mathrm{T}(\mathrm{N})$ and the Θ-complexity of $\mathrm{T}(\mathrm{N})$.
From the line-by-line analysis above,

$$
\begin{aligned}
T(N) & =2+1+1+\sum_{k=1}^{N-1}(2+4+2)+1+1 \\
& =\sum_{k=1}^{N-1} 8+6 \\
& =8 N-2
\end{aligned}
$$

Again, if you counted the "dot" operator, you'd get a slightly different answer:

$$
\begin{aligned}
T(N) & =2+1+1+\sum_{k=1}^{N-1}(3+4+2)+2+1 \\
& =\sum_{k=1}^{N-1} 9+7 \\
& =9 N-2
\end{aligned}
$$

And either way, it's clear from the theorems that $T(N)$ is Theta(N).
3. [20 points] For each part, determine the simplest possible function $g(n)$ such that the given function is $\Theta(g)$. No justification is necessary, but you might have to do some analysis using the theorems from the notes.
a) $a(n)=14 n^{2}+3 n \log n$
$a(n)$ is $\theta\left(n^{2}\right)$ by Theorem 13
$b(n)$ is $\theta\left(n^{2} \log n\right)$ by Theorem 8 and
b) $b(n)=3 n^{2} \log n$

$$
\operatorname{limit}_{n \rightarrow \infty} \frac{3 n^{2} \log n}{n^{2} \log n}=\operatorname{limit}_{n \rightarrow \infty} 3=3
$$

$c(n)$ is $\theta\left(n^{2} \log n\right)$ by Theorem 8 and
c) $c(n)=3 n \log ^{2} n+3 n^{2} \log n$
d) $d(n)=10 n^{2}+2^{n}$

$$
\begin{aligned}
& \operatorname{limit}_{n \rightarrow \infty} \frac{3 n \log ^{2} n+3 n^{2} \log n}{n^{2} \log n}=\operatorname{limit}_{n \rightarrow \infty}\left(\frac{3 \log n}{n}+3\right) \\
& =3+\operatorname{limit}_{n \rightarrow \infty} \frac{3 / n \ln 2}{1}=3+0=3
\end{aligned}
$$

$d(n)$ is $\theta\left(2^{n}\right)$ by Theorem 8 and

$$
\begin{aligned}
& \operatorname{limitit}_{n \rightarrow \infty} \frac{10 n^{2}+2^{n}}{2^{n}}=\operatorname{limit}_{n \rightarrow \infty}\left(\frac{10 n^{2}}{2^{n}}+1\right) \\
& =1+\operatorname{limit}_{n \rightarrow \infty} \frac{20 n}{2^{n} \ln 2}=1+\operatorname{limit}_{n \rightarrow \infty} \frac{20}{2^{n} \ln ^{2} 2}=1
\end{aligned}
$$

$e(n)$ is $\theta(n)$ by Theorem 8 and
e) $e(n)=\frac{n^{2}+2 n+3}{n}$

$$
\begin{aligned}
& \operatorname{limit}_{n \rightarrow \infty} \frac{\left(n^{2}+2 n+3\right) / n}{n}=\operatorname{limit}_{n \rightarrow \infty} \frac{n^{2}+2 n+3}{n^{2}} \\
& =\operatorname{limit}_{n \rightarrow \infty}\left(1+\frac{2}{n}+\frac{3}{n^{2}}\right)=1
\end{aligned}
$$

4. [15 points] Suppose that executing an algorithm on input of size N requires executing $T(N)=N \log N+16 N$ instructions. How long would it take to execute this algorithm on hardware capable of carrying out 2^{22} instructions per second if $\mathrm{N}=$ 2^{30} ? (Give your answer in hours, minutes and seconds, to the nearest second.)

The number of instructions that the algorithm would execute is given by

$$
T\left(2^{30}\right)=2^{30} \log 2^{30}+16 \cdot 2^{30}=30 \cdot 2^{30}+16 \cdot 2^{30}=46 \cdot 2^{30}
$$

The number of seconds required is

$$
\frac{T\left(2^{30}\right)}{2^{22}}=\frac{46 \cdot 2^{30}}{2^{22}}=46 \cdot 2^{8}=11776
$$

That works out to be $\mathbf{3}$ hours, 16 minutes, 16 seconds.
5. [25 points] Design an efficient algorithm for solving the following problem:

Given an array A holding N elements, such that $A[0]<A[1]<A[2]<. \quad .<A[N-1]$, determine whether there is an index k such that $0<=k<=N-1$ and $A[k]=k$.

Write your algorithm as a Java function and state its Θ-complexity.
This can be solved by simply changing the binary search algorithm in the notes. The key insights are:

- if $\mathbf{A}[k]<k$ then there cannot be a solution for $i<k$
- if $A[k]>k$ then there cannot be a solution for $I>k$

The changes are minimal, and left to you. The complexity is that of binary search, Theta($\log \mathrm{N})$.
6. [10 points] Prove the following:

$$
\text { if } x \text { is a real number then }\lceil x\rceil+1=\lceil x+1\rceil
$$

proof:
If \boldsymbol{x} is a real number, then there is an integer k such that $k<x<=\boldsymbol{k}+1$, and by definition

$$
\lceil x\rceil=k
$$

But then, $k+1<x+1<=k+2$, so

$$
\lceil x+1\rceil=k+2=k+1+1=\lceil x\rceil+1
$$

