You will submit your solution to this assignment to the Curator System (as HW02). Your solution must be either a plain text file (e.g., NotePad) or a typed MS Word document; submissions in other formats will not be graded.

Except as noted, credit will only be given if you show relevant work.

1. [15 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of the body of the following function.
```
public double eval(double[] c, double x) {
    double polyx = c[0];
    for (int k = 1; k < c.length; k++) {
        double xToK = x;
        for (int i = 1; i < k; i++) {
            xToK = x * xToK;
        }
        polyx = polyx + c[k] * xToK;
    }
    return polyx;
}
```

State both a complexity function $\mathrm{T}(\mathrm{N})$ and the Θ-complexity of $\mathrm{T}(\mathrm{N})$.
2. [15 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of the body of the following function.

```
public double eval(double[] c, double x) {
    double polyx = c[0];
    double xToK = x;
    for (int k = 1; k < c.length; k++) {
        polyx = polyx + c[k] * xToK;
        xToK = x * xToK;
    }
    return polyx;
}
```

State both a complexity function $\mathrm{T}(\mathrm{N})$ and the Θ-complexity of $\mathrm{T}(\mathrm{N})$.
3. [20 points] For each part, determine the simplest possible function $g(n)$ such that the given function is $\Theta(g)$. No justification is necessary, but you might have to do some analysis using the theorems from the notes.
a) $a(n)=14 n^{2}+3 n \log n$
b) $b(n)=3 n^{2} \log n$
c) $c(n)=3 n \log ^{2} n+3 n^{2} \log n$
d) $d(n)=10 n^{2}+2^{n}$
e) $e(n)=\frac{n^{2}+2 n+3}{n}$
4. [15 points] Suppose that executing an algorithm on input of size N requires executing $T(N)=N \log N+16 N$ instructions. How long would it take to execute this algorithm on hardware capable of carrying out 2^{22} instructions per second if $\mathrm{N}=$ 2^{30} ? (Give your answer in hours, minutes and seconds, to the nearest second.)
5. [25 points] Design an efficient algorithm for solving the following problem:

Given an array A holding N elements, such that A[0] < A[1] < A[2] < . . . < A [N-1], determine whether there is an index k such that $0<=k<=N-1$ and $A[k]=k$.

Write your algorithm as a Java function and state its Θ-complexity.
6. [10 points] Prove the following:

$$
\text { if } x \text { is a real number then }\lceil x\rceil+1=\lceil x+1\rceil
$$

