
CS 3114 Data Structures & Algorithms Homework 1: Trees & Induction

 1

You will submit your solution to this assignment to the Curator System (as HW1). Your solution must be either a plain text file

(e.g., NotePad) or a typed MS Word document; submissions in other formats will not be graded.

Partial credit will only be given if you show relevant work.

1. [25 points] Design an algorithm to determine whether a given binary tree is organized to support the BST property.

Express your solution as a Java function (not a BST member function), implemented in the same package as the BST

generic specified in Minor Project 2:

boolean isValidBST(BST<T> Tree) {

 if (Tree == null) return false;

 if (Tree.isEmpty()) return true;

 return isValidBST(Tree.root, null, null);

}

boolean isValidBST(BinaryNode<T> sRoot, T Lo, T Hi) {

 if (sRoot == null) return true;

 if (Lo != null && sRoot.element.compareTo(Lo) <= 0)

 return false;

 if (Hi != null && sRoot.element.compareTo(Hi) >= 0)

 return false;

 return isValidBST(sRoot.left, Lo, sRoot.element) &&

 isValidBST(sRoot.right, sRoot.element, Hi);

}

CS 3114 Data Structures & Algorithms Homework 1: Trees & Induction

 2

2. [25 points] Write an implementation of an algorithm to perform a range search in a BST. Base your solution on the

BST interface given for Minor Project 1, and

Assume that the following public method has been added to the interface for the BST given in Minor Project 1:

// Pre: lower and upper are valid objects of type T, such that

// lower <= upper, according to type T's compareTo()

// Returns: Vector object containing all the elements X found in the

// BST such that lower < X < upper, according to compareTo();

// the order in which the elements occur is not guaranteed

//

public Vector<T> rangeSearch(T lower, T upper) {

 Vector<T> matches = new Vector<T>();

 rangeSearchHelper(lower, upper, root, matches);

 return matches;

}

Complete the implementation of the following private helper function, which would also be added to the given BST

interface:

private void rangeSearchHelper(T lower, T upper, BinaryNode sroot,

 Vector<T> matches) {

 if (sroot == null) return; // nothing of interest here

 if (sroot.element.compareTo(lower) > 0 &&

 sroot.element.compareTo(upper) < 0) { // current elem is in range

 matches.add(sroot.element);

 }

 if (sroot.element.compareTo(lower) > 0) { // may be matches in left

 // subtree

 rangeSearchHelper(lower, upper, sroot.left, matches);

 }

 if (sroot.element.compareTo(upper) <= 0) { // may be matches in right

 // subtree

 rangeSearchHelper(lower, upper, sroot.right, matches);

 }

}

 Your implementation should operate as efficiently as possible. It should put references to all the matching data

objects, if any, into the Vector object that is returned by the public function.

CS 3114 Data Structures & Algorithms Homework 1: Trees & Induction

 3

3. [25 points] Use Induction to prove the following fact: for every integer, 1N ≥ , a BST with N nodes must have at

least ()log 1N + levels. (You may not use any of the BST theorems from the notes.)

If T is a BST with N = 1 node then T has 0 levels, and log(1) log(1 1) log(2) 1N + = + = = .

If Tis a BST with 2 or 3 nodes, then T has at least 2 levels, and log(1) log(3 1) log(4) 2N + ≤ + = = .

Now, suppose that for some N, if T is a BST with K nodes, where 0 K N≤ ≤ , then T the number of levels in T

is at least log(1)K + .

Let T be a BST with N + 1 nodes. Then T consists of a root node and two subtrees, and the two subtrees must

collectively contain N nodes. Therefore, one of the subtrees must contain at least N/2 nodes.

Then, by the inductive assumption, the number of levels in that subtree must be at least log(/ 2 1)N + .

And so, T must contain at least log(/ 2 1) 1N + + levels. However:

()
()
()

log(/ 2 1) 1 log(/ 2 1) 1

log(/ 2 1) log(2)

log 2(/ 2 1)

log 2

log (1) 1

N N

N

N

N

N

+ + = + +
= + +

= +

= +

= + +

Therefore, by induction, the theorem holds for all 1N ≥ .

4. [25 points] Use the result proved in question 3 to prove that: for every integer, 1λ ≥ , a BST with λ levels can contain

no more than 2 1λ − nodes.

Suppose that T is a BST with at least 2λ
nodes. Then, from problem 3, the number of levels in T must be at

least ()log 2 1λ + .

Now, log() is strictly increasing, so log(2 1) log(2)λ λ λ + > = , and therefore (since λ is an integer)

log(2 1) 1λ λ + ≥ + .

But, that contradicts the assumption that T has λ levels.

