
CS 3114 Data Structures and Algorithms Minor Project 2: BST

 1

Binary Search Tree

This assignment involves implementing a standard binary search tree as a Java generic. Because this assignment will be auto-

graded using a test harness we will provide, your implementation must conform to the public interface below, and include at

least all of the public and private members that are shown:

// The test harness will belong to the package indi cated below; the BST
// implementation will belong to it as well. In ad dition, the BST
// implementation will specify package access for t he inner node class
// and all specified data members in order that the test harness may have
// access to them.
//
package Minor.P2.DS;

public class BST<T extends Comparable<? super T>> {

 class BinaryNode {
 // Initialize a childless binary node.
 public BinaryNode(T elem) { . . . }
 // Initialize a binary node with children.
 public BinaryNode(T elem, BinaryNode lt, BinaryNode rt) { . . . }

 T element; // The data in the node
 BinaryNode left; // Pointer to the left child
 BinaryNode right; // Pointer to the right child
 }

 BinaryNode root; // pointer to root node, if present.

 // Initialize BST to an empty state; an empty BST c ontains no nodes.
 public BST() { . . . }

 // Return true iff BST contains no nodes.
 public boolean isEmpty() { . . . }

 // Return pointer to matching data element, or null if no matching
 // element exists in the BST. "Matching" shoul d be tested using the
 // data object's compareTo() method.
 // Pre:
 // The type T implements the interface Co mparable;
 // x is a reference to a valid object of type T, or is null
 public T find(T x) { . . . }

 // Insert element x into BST, unless it is already stored. Return true
 // if insertion is performed and false otherwis e.
 // Pre:
 // The type T implements the interface Co mparable;
 // x is a reference to a valid object of type T, or is null
 public boolean insert(T x) { . . . }

 // Delete element matching x from the BST, if prese nt. Return true if
 // matching element is removed from the tree an d false otherwise.
 // Pre:
 // The type T implements the interface Co mparable;
 // x is a reference to a valid object of type T, or is null
 public boolean remove(T x) { . . . }

 // Delete the subtree, if any, whose root contain s an element matching x.
 // Pre:
 // The type T implements the interface Co mparable;
 // x is a reference to a valid object of type T, or is null
 public boolean prune(T x) { . . . }

CS 3114 Data Structures and Algorithms Minor Project 2: BST

 2

 // Restore the BST to an empty state; precisely the same as the state
 // created by the BST constructor.
 public void clear() { . . . }

 // Return true iff the two objects involved are both BSTs, have the
 // same physical structure, and store equal val ues in corresponding
 // nodes. equals() should be tested using the data object’s equals()
 // method.
 // Pre:
 // other is a reference to a valid BST ob ject
 public boolean equals(Object other) { . . . }
}

You may safely add features to the given interface, but if you omit or modify members of the given interface you will almost

certainly face compilation errors when you submit your implementation for testing.

You must implement all tree traversals recursively, not iteratively. You will certainly need to add a number of private

recursive helper functions that are not shown above. Since those will never be called directly by the test code, the interfaces

are up to you.

You must place the declaration of your BST generic in a package named MinorP2.DS and specify package access for

members as indicated above, or compilation will fail when you submit it.

Note on deletion

The test harness will expect you to handle deletion of a node in a precisely-specified manner. Deletion of a leaf simply

requires setting the pointer to that node to null . Deletion of a node with one non-empty subtree simply requires setting the

pointer to that node to point to the node’s subtree.

Deletion of a node with two non-empty subtrees must be handled in the following manner. First, locate the node rMin that

holds the minimum value in the right subtree of the node to be deleted. Then, detach rMin from the right subtree using the

appropriate logic for a leaf or a one-subtree node. Next, replace the node to be deleted with rMin, by resetting pointers as

necessary. Do not simply copy the data reference from rMin to the node containing the value to be deleted.

The test harness will expect deletion to be handled in precisely this manner.

Design and implementation requirements

There are some explicit requirements, in addition to those on the Programming Standards page of the course website:

� You must implement the BST to conform to the specification.

� The insertion logic must not allow duplicate records to be inserted.

� Deletion must be handled exactly as described above.

� The equals() method must conform to the “equals-contract” described in the course notes.

� Under no circumstances should any of the BST member functions write output.

Testing:

We will be testing your implementation with our own test driver. We may (or may not) release information about that driver

before the assignment is due. In any case, it is your responsibility to design and carry out a sensible test of your

implementation before submitting it. For that purpose, you may share test code (but absolutely no tree code!!) via the class

Forum.

Be sure you test all of the interface elements thoroughly, both in isolation and in interleaved fashion.

CS 3114 Data Structures and Algorithms Minor Project 2: BST

 3

Evaluation:

You should document your implementation in accordance with the Programming Standards page on the course website. It is

possible that your implementation will be evaluated for documentation and design, as well as for correctness of results. If so,

your submission that achieved the highest score will be evaluated by one of the TAs, who will assess a deduction (ideally

zero) against your score from the Curator.

Note that the evaluation of your project may depend substantially on the quality of your code and documentation.

What to turn in and how:

This assignment will be auto-graded using a test harness on the Curator system. The testing will be done under Windows

(which should not matter at all) using Java version 1.6.21 or later.

Submit your BST.java file (not a zip or jar) containing your BST generic to the Curator System. Submit nothing else. Your

solution should not write anything to standard output.

Your submitted source file will be placed in the appropriate subdirectory with the packaged test code, and will then be

compiled with the test harness using the following command, executed in the root of the source directory tree:

 javac testDriver.java

Instructions, and the appropriate link, for submitting to the Curator are given in the Student Guide at the Curator website:

http://www.cs.vt.edu/curator/ .

You will be allowed to submit your solution multiple times; the highest score will be counted.

Pledge:

Each of your program submissions must be pledged to conform to the Honor Code requirements for this course. Specifically,

you must include the pledge statement provided on the Programming Standards page in one of your submitted files.

