

CS 3114 Fall 2010 GIS Student:

 GTA:

Submission date: Sub #:

(from the submit log, not a file timestamp)

Deduction for: fundamentals
 xx /250

 design/engr xx /100

 documentation xx /10

 correctness xx /190

 Total score out of 300 xxx /300

 Fundamental Requirements
Have the student show you the relevant areas in his/her implementation

Item
Deduction

 Required data structures elements
1
:

 PR quadtree – does not use a PR quadtree -100

 Hash table – does not use a hash table -100

 Buffer pool – does not use a buffer pool -50

Design and Engineering (-100 points maximum)

Have the student show you the relevant areas in his/her implementation

Item
Deduction

 PR Quadtree implementation
2
:

 quadtree internal nodes store coordinate/boundary data for coordinate regions -20

 quadtree internal nodes store anything else besides four node pointers -10

 quadtree leaf nodes store node pointers -20

 quadtree leaf nodes do not store specified "bucket" of index objects -10/-30

 not easy to modify bucket size -15

 region search not properly optimized -20

Hash table implementation
3

 does not use an array for the physical storage of the table -30

 does not use some form of quadratic hashing to resolve collisions -20

Buffer pool implementation
4

 does not employ LRU replacement policy -20

 does not use 20 slots to cache records -10

Feature name/state and location indices
5
:

 no wrapper class for the container that holds the index entries -20

 index data (e.g., feature name/state and set of file offsets) not encapsulated within a class -10

 (It's OK if public data is used here.)

 Index stores complete GIS records -25

General infrastructure
6

 no overall controller class or command processor class -10

 no class to encapsulate logic of retrieving next command from script file -10

 no class to represent a GIS record (String is not acceptable) -10

Comments:

Total
deduction
for this
section:

Notes:

1
 This is simply checking whether the solution actually implements the three mandatory data structures. You are

concerned yet with whether they are implemented correctly. Be careful of situations where a very incomplete

implementation is supplied, but not actually used. There should be enough of an implementation to convince

you that the student has actually made a serious attempt to complete the requirements.

 If the deductions for the quadtree or hash table apply, either the student will have substituted some other

structure, probably something much simpler, or else the student will not have a working solution.

 If the student is penalized here, try to avoid double-jeopardy in the later sections. For example, if the student

did not implement a buffer pool, skip the test of the buffer pool when you test the functionality (and do not

penalize the student for that test, but do enter a comment for that test indicating it was skipped, and why).

2
 The discussion in class made it clear that internal nodes store only pointers to other nodes, and that leaf nodes

do not store pointers, and that it is not acceptable to store the boundaries of the region a node represents in that

node.

 The specification and class discussions were perfectly clear that a bucket PR quadtree is to be used with a

bucket size of 4. Deduct 30 points for having no bucket at all; deduct 10 points for having a structure to store

multiple records in the leaf node, but not providing the specified bucket size.

 Look at the region search code and determine whether the student is correctly comparing the boundaries of the

search region to the boundaries of each subtree root node in order to decide whether to actually search the

subtree.

 For "ease of changing the bucket size", look at the code. It should be possible to change the bucket size by

altering a single line of code (a constructor call, the declaration of a static final class member, etc.).

3
 They cannot possibly achieve Theta(1) search cost unless they use an array. They may any form of quadratic

probing they like, and they may revert to a backup strategy, like linear probing, after a reasonable number of

unsuccessful steps using quadratic probing.

4
 It may be easier to verify the first item by waiting to check the output from the test of the buffer pool. They

may use any underlying physical structure to organize the slots.

5
 The point of the wrapper classes is to provide an appropriate interface for query transactions. This was

discussed in class, and shown in the posted solutions for the design homework. Note that it is absolutely not an

acceptable design to use the naked quadtree or hash table in place of this requirement.

The issue in the second item is whether they've properly encapsulated the data for the index entry. For the

location index, it is acceptable if they separate the location data from the set of file offsets, as long as they use a

single object for each (so two objects altogether).

6
 These were all shown in the posted solutions to the design homework.

