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Heaps

A heap is a complete binary tree.

A max-heap is a complete binary tree in which the value in each internal node is greater 

than or equal to the values in the children of that node.

A min-heap is defined similarly.
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Mapping the elements of 

a heap into an array is 

trivial:

if a node is stored at 

index k, then its left 

child is stored at index 

2k+1 and its right child 

at index 2k+2
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Building a Heap

The fact that a heap is a complete binary tree allows it to be efficiently represented 

using a simple array.

Given an array of N values, a heap containing those values can be built, in situ, by 

simply “sifting” each internal node down to its proper location:
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- start with the last 

internal node

- swap the current 

internal node with 

its larger child, if 

necessary

- then follow the 

swapped node down

- continue until all 

internal nodes are 

done

* *

*

*
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Heap Class Interface

We will consider a somewhat minimal maxheap class:

public class BinaryHeap<T extends Comparable<? super T>> {

private static final int DEFCAP = 10;         // default array size
private int size;                             // # elems in array
private T [] elems;                           // array of elems

public BinaryHeap() { . . . }                 // construct heaps in
public BinaryHeap( int capacity ) { . . . }   //    various ways
public BinaryHeap( T [ ] items ) { . . . }

public boolean insert( T D ) { . . . }        // insert new elem
public T findMax() { . . . }                  // get maximum element
public T deleteMax() { . . . }                // remove maximum element
public void clear() { . . . }                 // reset heap to empty
public boolean isEmpty() { . . . }            // is heap empty?

private void siftDown( int hole ) { . . . }   // siftdown algorithm
private void buildHeap() { . . . }            // heapify
public void printHeap() { . . . }             // linear display

}
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buildHeap and siftDown

As described earlier: 

private void buildHeap() {
// first elem is stored at index 1, not 0  
for ( int idx = size / 2; idx > 0; idx-- )

siftDown( idx );
}

private void siftDown(int hole) {

int child;
T tmp = elems[ hole ];

for ( ; hole * 2 <= size; hole = child ) {

child = hole * 2;
if ( child != size &&

elems[ child + 1 ].compareTo( elems[ child ] ) > 0 )
child++;
if ( elems[ child ].compareTo( tmp ) > 0 )

elems[ hole ] = elems[ child ];
else

break;
}
elems[ hole ] = tmp;

}

Determine which child node 

is larger

If child is larger than parent, 

it must move up

Finally, put starting value in 

right place

QTP: Why is idx 

initialized this 

way?
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private void siftDown(int hole) {

int child;
T tmp = elems[ hole ];

for ( ; hole * 2 <= size; hole = child ) {

child = hole * 2;
if ( child != size &&

elems[ child + 1 ].compareTo( elems[ child ] ) > 0 )
child++;
if ( elems[ child ].compareTo( tmp ) > 0 )

elems[ hole ] = elems[ child ];
else

break;
}
elems[ hole ] = tmp;

}

Cost of siftDown

In a complete binary tree of N nodes, the number of levels is at most 1 + log(N).

Since each non-terminating iteration of the loop moves the target value a distance of 1 

level, the loop will perform no more than log(N) iterations.

Thus, the worst case cost of SiftDown() is Θ(log N).

In the worst case, we 

perform two element 

comparisons5

5and one element copy per 

iteration

That’s 2log(N) comparisons 

and log(N) swaps.
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Cost of buildHeap

Suppose we start with a complete binary tree with N nodes; the number of steps required 

for sifting values down will be maximized if the tree is also full, in which case N = 2d-1 

for some integer d = log N.  For example:
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level 0: 20 nodes, can sift 

down d - 1 levels

level 1: 21 nodes, can sift 

down d - 2 levels

level 2: 22 nodes, can sift 

down d - 3 levels

We can prove that in general, level k of a full and complete binary tree will contain 2k

nodes, and that those nodes are d – k – 1 levels above the leaves.

Thus…
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Cost of buildHeap

In the worst case, the number of comparisons BuildHeap() will require in building a heap 

of N nodes is given by:

Since, at worst, there is one move for each two comparisons, the maximum number of 

element moves is N – log N + 1.

Hence, building a heap of N nodes is Θ(N) in both comparisons and element moves.
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Deleting the Root of a Heap

We will see that the most common operation on a heap is the deletion of the root node.  

The heap property is maintained by sifting down… 

public T deleteMax() {

if ( isEmpty( ) )
throw new RuntimeException( );

T maxItem = elems[ 1 ];
elems[ 1 ] = elems[ size ];
size--;

siftDown( 1 );

return maxItem;
}

Check for empty heap

Save the root (at index 1),

replace it with the last leaf,

shrink the heap by one node.

Sift the new root down to 

restore the heap property.

QTP: Why is the last leaf chosen as the 

replacement for the root?
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Example of Root Deletion

Given the initial heap:

In a heap of N nodes, the maximum 

distance the root can sift down 

would be log N - 1.
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Heap Sort

A list can be sorted by first building it into a heap, and then iteratively deleting the root 

node from the heap until the heap is empty.  If the deleted roots are stored in reverse 

order in an array they will be sorted in ascending order (if a max heap is used).

public static void heapSort(Integer[] List, int Sz) {

BinaryHeap<Integer> toSort = new BinaryHeap<Integer>(List, Sz);

int Idx = Sz - 1;
while ( !toSort.isEmpty() ) {

List[Idx] = toSort.deleteMax();
Idx--;

}
}
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Cost of Deleting the Roots

Recalling the earlier analysis of building a heap, level k of a full and complete binary 

tree will contain 2k nodes, and that those nodes are k levels below the root level.

So, when the root is deleted the maximum number of levels the swapped node can sift 

down is the number of the level from which that node was swapped.

Thus, in the worst case, for deleting all the roots…
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As usual, with Heap Sort, this would entail essentially the same number of element 

moves.



Heaps

Data Structures & Algorithms

12

CS@VT ©2000-2009 McQuain

Cost of Heap Sort

Adding in the cost of building the heap from our earlier analysis,
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and...

So, in the worst case, Heap Sort is Θ(N log N) in both swaps and comparisons.

  NNN −= log Swaps Total
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Priority Queues

A priority queue consists of entries, each of which contains a key field, called the 

priority of the entry.

Aside from the usual operations of creation, clearing, tests for full and empty, and 

reporting its size, a priority queue has only two operations:

- insertion of a new entry

- removal of the entry having the largest (or smallest) key

Key values need not be unique.  If not, then removal may target any entry holding the 

largest value.
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Representation

Representation of a priority queue may be achieved using:

- a sorted list, but…

- an unsorted list, but…

- a max-heap

Priority queues may be used to manage prioritized processes in a time-sharing 

environment, time-dependent simulations, and even numerical linear algebra. 


