
Hash Tables

Data Structures & Algorithms

1

CS@VT ©2000-2009 McQuain

The Cost of Searching

Given a collection of N equally-likely data values, any search algorithm that proceeds by

comparing data values to each other must, on average, perform at least Θ(log N)

comparisons in carrying out a search.

There are several simple ways to achieve Θ(log N) in the worst case as well, including:

- binary search on a sorted array

- search in a balanced binary search tree

- search in a skip list

But, is there some way to “beat” the limit in the theoretical statement above?

There seem to be two possible openings:

- what if the data values are not equally-likely to be the target of a random search?

- what if the search process does not compare data elements?

In either case, the theorem would not apply…

Hash Tables

Data Structures & Algorithms

2

CS@VT ©2000-2009 McQuain

Hash Table Concept

Table

storing

data

objects

F(key)

key

data object

location L

If:

and the container storing the collection supports random access with Θ(1) cost,

the function that computes the location has Θ(1) cost,

then we would have a total search cost of Θ(1).

Hash Tables

Data Structures & Algorithms

3

CS@VT ©2000-2009 McQuain

Hash Table Insertion

Simple insertion of an entry to a hash table involves two phases:

Name

LocalAddress

HomeAddress

IDNumber

Major

Level

. . .

Record

IDNumber

H()

Table
Index

0

1

2

3

…

K

…

Vacant

Filled

Filled

Filled

??

The appropriate record key value must be hashed to yield a table index. If that slot is

vacant, the record is inserted there. If not, we have a collision…

Hash Tables

Data Structures & Algorithms

4

CS@VT ©2000-2009 McQuain

Resolving Collisions

When collisions occur, the hash table implementation must provide some mechanism to

resolve the collision:

- no strategy: just reject the insertion. Unacceptable.

- open hashing: place the record somewhere other than its home slot

- requires some method for finding the alternate location

- method must be reproducible

- method must be efficient

- aka hashing with probing

- chaining: view each slot as a container, storing all records that collide there

- requires an appropriate, efficient container for each table slot

- overhead is a concern (e.g., pointers needed by container, search cost in slot)

- aka open chaining

Hash Tables

Data Structures & Algorithms

5

CS@VT ©2000-2009 McQuain

Open Hashing

If the home slot for the record that is being inserted is already occupied, then simply

chose a different location within the table:

Table

storing

data

objects

F(key)

key

data object

home index L

But… how do we choose this alternate location?

The technique must be reproducible, and on average be cheap.

Hash Tables

Data Structures & Algorithms

6

CS@VT ©2000-2009 McQuain

Linear Probing

Linear probing involves simply walking down the table until an empty slot is found:

Table

storing

data

objects

F(key)

key

data object

home index L

Mathematically, we iterate the following formula until we find an available slot:

() (())%Next k F key k TableSize= +

Hash Tables

Data Structures & Algorithms

7

CS@VT ©2000-2009 McQuain

Quadratic Probing

Quadratic probing uses a formula that produces more "scattering":

Table

storing

data

objects

F(key)

key

data object

home index L

Mathematically, we iterate the following formula until we find an available slot:

2() (())%Next k F key k TableSize= +

Hash Tables

Data Structures & Algorithms

8

CS@VT ©2000-2009 McQuain

Comparison

Linear probing tends to produce "runs" of adjacent filled cells when collisions occur:

Quadratic probing doesn't promote clustering… but…

This is known as clustering.

Hash Tables

Data Structures & Algorithms

9

CS@VT ©2000-2009 McQuain

Comparison

Quadratic probing doesn't visit all the slots in the table:

17 + 1 18
+ 4 21
+ 9 1
+ 16 8
+ 25 17
+ 36 3
+ 49 16
+ 64 6
+ 81 23
+ 100 17
+ 121 13
+ 144 11
+ 169 11
+ 196 13
+ 225 17
. . .

Suppose that we have a home index

of 17, then quadratic probing will

generate the following sequence of

slot indices:

0 24

Hash Tables

Data Structures & Algorithms

10

CS@VT ©2000-2009 McQuain

Quadratic Probing Revisited

Using the basic formula:
2() (())%Next k F key k TableSize= +

If the number of slots in the table is prime, we can prove that the first TableSize/2 locations

examined are unique…

If the number of slots in the table is a prime of the form 4k + 3 and we use alternating

signs for the steps then every slot in the table will be reached, if necessary…

Hash Tables

Data Structures & Algorithms

11

CS@VT ©2000-2009 McQuain

Double Hashing

Another way to resolve collisions is to pick a second hash function, say G() and then

generate a sequence of probe slot index values by:

2() (())%Next k k G key TableSize= ⋅

17 (home)
24
6
13
20
2
9
16
23
5
12
19
1
8
15
. . .

Take the earlier example for quadratic probing, and assume

that G(key) is 7; we would then get the probe sequence:

Good: we only have to evaluate G() once and then do a

single multiplication and mod to find the next probe slot.

Bad:

- if G(key) is 0

- how to guarantee this won't suffer from same defect as

pure quadratic probing?

Hash Tables

Data Structures & Algorithms

12

CS@VT ©2000-2009 McQuain

Deletion with Probing

Deleting a record poses a special problem: what if there has been a collision with the

record being deleted? In that case, we must be careful to ensure that future searches will

not be disrupted.

Solution: replace the deleted record with a "tombstone" entry that indicates the cell is

available for an insertion, but that it was once filled so that a search will proceed past it

if necessary.

Problem: this increases the average search cost since probe sequences will be longer

that strictly necessary.

We could periodically re-hash the table or use some other reorganization scheme.

Question: how to tombstones affect the logic of hash table searching.

Question: can tombstones be "recycled" when new elements are inserted?

a b ▼ ▼ f r d ▼ h m t

Hash Tables

Data Structures & Algorithms

13

CS@VT ©2000-2009 McQuain

Chaining

Design the table so that each slot is actually a container that can hold multiple records.

Here, the “chains" are linked lists which could hold any number of colliding records.

Alternatively each table slot could be large enough to store several records directly… in

that case the slot may overflow, requiring a fallback…

0

1

2

3

4

5

6

7

8

9

10

C •

H F

E

D •

A •

G •B

