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Motivation

Data structures are often needed to provide organization for large sets of data.

However, traditional approaches offer a tradeoff between insertion/deletion and search 

performance:

Contiguous storage (e.g., a sorted array):

- worst/average search cost Θ( log N ) where N is the number of data elements

- insert/delete cost Θ( N )

Linear linked storage (e.g., a linked list):

- worst/average search cost Θ( N )

- insert/delete cost Θ( 1 )

Balanced binary trees (e.g., an AVL tree):

- worst/average search cost Θ( log N )

- insert/delete cost Θ( log N )

Unfortunately, balanced binary 

tree implementations are quite 

complicated.

We'd like similar performance 

with less complexity-
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The Skip List Concept

Linear linked structures are relatively simple to implement, and well-understood.

We can improve search costs by adding some additional pointers to selected nodes to 

allow "skipping" over nodes that can safely be ignored.

Consider:
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Consider searching for the values 

17 and 32.

How would the extra forward 

pointers be used?

How many comparisons would 

be required?

"Skip lists: a probabilistic alternative to balanced trees", CACM, W. Pugh, 1990
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Search Example

Consider searching for the value 17:

Level 0

Level 1

Level 2

By using the extra pointers, we can jump over the first half of the list, and then determine 

that the value does not lie within the fourth quarter of the list.  A careful count of 

operations doesn't show any advantage for this tiny list, but…
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Terminology

We can view the list as consisting of a hierarchy of parallel, intersecting sub-lists or 

levels.

Level 1 is a subset of level 0, level 2 a subset of level 1, and so forth.

By convention, we say each node belongs to level K-1 if it contains K forward pointers.
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Modifying the List

Unfortunately, inserting new nodes into this "ideal" skip list structure is very expensive.

Consider inserting the value 8:

We would have to change the 

"level" of the node containing 10, 

and the successive nodes…

… must the structure be so 

regular in order to provide 

improved performance?
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Probabilistic Insertion

In the "ideal" skip list:

- 1/2 the nodes are in level 0, 1/4 in level 1, 1/8 in level 2, and so forth.

- nodes in level 0 point to the next node; nodes in level 1 to the next and second-next 

node; nodes in level 2 to the next, second-next and fourth-next nodes; and so forth

- the level of a node is determined entirely by its position in the list

We can reduce the cost of insertion by:

- selecting a random level for the new node, so that the proportion of level 0, level 1, 

etc., nodes is roughly preserved

- level 0 nodes point to the next node;

level 1 nodes also point to the next node that belongs to level 1 or higher;

level 2 nodes also point to the next node that belongs to level 2 or higher;

… and so forth
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Insertion Example

Empty list configured to provide 1 level:

Insert the value 10; assume that level 1 is selected:

•

Head

10

•

•

Head

Insert the value 5 at level 0 and then insert the value 7 at level 0:

5 7 10

•

•

Head
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Insertion Example Continued

Insert the value 12 at level 2:

5 7 10

Head

12

•

•

•

And then insert the value 15 at level 1:

5 7 10

Head

12

•

15

•

•

Consider searching for a few values, say 7 and 15.  In the former case, there's no 

advantage over a simple list; in the latter, there's a substantial advantage.
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Insertion Details

Consider inserting the value 8 into the skip list below, and assume that the new node is 

assigned to level 2:

The first step is to search for the largest value already in the list that is less than or equal to 

the new value.  The new node will become the level-0 successor of that existing node.

To complete the insertion, we must modify pointers to and from the new node.

But which pointers need to be modified?

Precisely the pointers that break the dashed line and are at a level containing the new node.

8

•

•

•

5 7 10

Head

12

•

15

•

•



Skip Lists

Data Structures & Algorithms

10

CS@VT ©2000-2009 McQuain

Remembering "Passing" Pointers

During the search phase, we must remember the nodes that contain pointers that "go past" 

the insertion point for the new node.

To do this, we need an array that can hold up to N + 1 node pointers, where N is the 

maximum number of levels among the existing list nodes.

5 7 10

Head

12

•

15

•

•

8

•

•

•

Level

2    1    0
As the search proceeds, each time we "drop" a level we 

remember the node at which that occurred.

And, of course, we remember the preceding node.
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Updating Pointers During Insertion

At this point we have sufficient information to perform the necessary pointer updates.

The pointers from the new node are set using the pointers identified earlier, taking into 

account the levels.

Level

2    1    0
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Updating Pointers During Insertion

Then, the pointers to the new node are set, again taking levels into account:

In practice, resetting the pointers from and to the new node would be interleaved so only 

one pass through the list of "passed" pointers is needed.
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2    1    0
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Insertion Algorithm

Given a data value (that may or may not occur in the list):

Node* Update[MaximumLevel]       ; for remembering "pass" nodes
Node* x := &HeadNode;

for i := MaximumLevel downto 0 do

; go as far as possible on current level
while x->forward[i]->keyField < searchKey do

x := x->forward[i]
endwhile

; search level will now change
Update[i] := x             ; remember node for updating later
; drop to previous level (via for loop)

endfor

x := x->forward[0]            ; predecessor is in next Node
. . .

Adapted from Pugh, 1990
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Insertion Algorithm

The first part of the algorithm has found the predecessor node, now it's time for the 

physical insertion:

. . .
if x->keyField = searchKey then

; take action for case of duplicate key value
else

Lvl := randomLevel()     ; select random level for new node
if Lvl > MaximumLevel then  ; adjust if list needs new level

for i := MaximumLevel + 1 to Lvl do
Update[i] := &HeadNode

endfor
MaximumLevel := Lvl

endif
; create new node
x := makeNode(Lvl, searchKey, Data)
; patch it into the list, updating "pass" pointers
for i := 0 to MaximumLevel do

x->forward[i] := Update[i]
Update[i]->forward[i] := x

endfor
endif
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Choosing the Level for a New Node

Each new node may be given a randomly-chosen level, but that will almost certainly be 

disastrous because it will lead to lots of unnecessary levels.

There are a number of schemes for restricting the level selection without sacrificing the 

degree of randomness that is necessary to achieve a high probability of good performance.

One approach is to "cap" the number of levels; for example if we allow no more than 32 

levels then in principle the list can store 232 data values.  A small cap is not desirable.

Another approach is "don't worry, be happy".  Trust a sensible random scheme to work 

out well enough.

Another is to cap the increase, say allow the addition of at most one new level to the list.

In any case, we do want some sort of exponential distribution:

int randomLevel() {

int Level;

for (Level = 0; rand() % 2 == 0; Level++);

return Level;

}
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Search Performance

It should be intuitively clear that the "ideal" skip list would give essentially the same 

search performance as a binary search; i.e., the average number of comparisons would be 

Θ( log N ).

But what about the "practical" skip list?  Clearly the irregular pattern will not necessarily 

be terribly similar to the "ideal" distribution.

In the paper cited on slide 2, Pugh proves that, with high probability, the average number 

of comparisons would be Θ( log N ) for the "practical" skip list as well.

That is, there is no guarantee that a skip list will always (or ever) provide highly efficient 

search, but in all likelihood a skip list will provide search costs that are at least roughly 

competitive with balanced binary tree structures.

Why consider using a skip list?  Primarily because the implementation is far simpler than 

that of a good balanced binary tree.
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Search Algorithm

Given a data value (that may or may not occur in the list):

The search logic here assumes some relational operators have been supplied for the key 

type and some convention for returning an indication of failure.

Node* x := &HeadNode;
for i := MaximumLevel downto 0 do

; go as far as possible on current level
while x->forward[i]->keyField < searchKey do

x := x->forward[i]
endwhile
; drop to previous level (via for loop)

endfor
x := x->forward[0]    ; step to next Node
if x->keyField = searchKey then

return x->Data
else

return failure
endif

Adapted from Pugh, 1990
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Skip List Deletion

Logically, deleting a node should be the opposite of insertion.  The same basic principles 

apply:

- first we must find the node that precedes the node to be deleted, if any, remembering 

the nodes containing "pass" pointers

- if the succeeding node contains the targeted key value

- update the "pass" pointers that point to the target node

- delete the targeted node

- if necessary, adjust the head node to reduce the number of levels in the list



Skip Lists

Data Structures & Algorithms

19

CS@VT ©2000-2009 McQuain

Deletion Example

Consider deleting the value 10 from the list below:

5 7 10

Head

12

•

15

•

•

Level

2    1    0

Temp

First we must find the preceding node and identify the nodes whose pointers may need to 

be reset.
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Deletion Example Continued

Next we must reset the pointers to the targeted node "around" it:

Finally, we must deallocate the targeted node.
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Insert/Delete Performance

Insertion and deletion both begin with a search, which will probably have cost Θ( log N ) .

Following the search, the number of pointers that must be updated is no more than twice 

the number of levels in the list, which should not be much more than log(N) if level 

assignments to new nodes have been done intelligently.

The remaining work (reducing the head structure, etc.) are essentially constant cost…

…aside from the node deletion, which involves a system call.  However, deletions are 

generally less expensive than allocations.

So, it is reasonable to expect that the cost of insertion and deletion will be Θ( log N ).


