
Skip Lists

Data Structures & Algorithms

1

CS@VT ©2000-2009 McQuain

Motivation

Data structures are often needed to provide organization for large sets of data.

However, traditional approaches offer a tradeoff between insertion/deletion and search

performance:

Contiguous storage (e.g., a sorted array):

- worst/average search cost Θ(log N) where N is the number of data elements

- insert/delete cost Θ(N)

Linear linked storage (e.g., a linked list):

- worst/average search cost Θ(N)

- insert/delete cost Θ(1)

Balanced binary trees (e.g., an AVL tree):

- worst/average search cost Θ(log N)

- insert/delete cost Θ(log N)

Unfortunately, balanced binary

tree implementations are quite

complicated.

We'd like similar performance

with less complexity-

Skip Lists

Data Structures & Algorithms

2

CS@VT ©2000-2009 McQuain

The Skip List Concept

Linear linked structures are relatively simple to implement, and well-understood.

We can improve search costs by adding some additional pointers to selected nodes to

allow "skipping" over nodes that can safely be ignored.

Consider:

7 10 15

•

20

•

25 •

12

17

Head

Level 0

Level 1

Level 2

Consider searching for the values

17 and 32.

How would the extra forward

pointers be used?

How many comparisons would

be required?

"Skip lists: a probabilistic alternative to balanced trees", CACM, W. Pugh, 1990

Skip Lists

Data Structures & Algorithms

3

CS@VT ©2000-2009 McQuain

Search Example

Consider searching for the value 17:

Level 0

Level 1

Level 2

By using the extra pointers, we can jump over the first half of the list, and then determine

that the value does not lie within the fourth quarter of the list. A careful count of

operations doesn't show any advantage for this tiny list, but…

7 10 15

•

20

•

25 •

12

17

Head

Skip Lists

Data Structures & Algorithms

4

CS@VT ©2000-2009 McQuain

Terminology

We can view the list as consisting of a hierarchy of parallel, intersecting sub-lists or

levels.

Level 1 is a subset of level 0, level 2 a subset of level 1, and so forth.

By convention, we say each node belongs to level K-1 if it contains K forward pointers.

7 10 15

•

20

•

25 •

12

17

Head

Level 0

Level 1

Level 2

Skip Lists

Data Structures & Algorithms

5

CS@VT ©2000-2009 McQuain

Modifying the List

Unfortunately, inserting new nodes into this "ideal" skip list structure is very expensive.

Consider inserting the value 8:

We would have to change the

"level" of the node containing 10,

and the successive nodes…

… must the structure be so

regular in order to provide

improved performance?

7 10 15

•

20

•

25 •

12

17

Head

Level 0

Level 1

Level 2

Skip Lists

Data Structures & Algorithms

6

CS@VT ©2000-2009 McQuain

Probabilistic Insertion

In the "ideal" skip list:

- 1/2 the nodes are in level 0, 1/4 in level 1, 1/8 in level 2, and so forth.

- nodes in level 0 point to the next node; nodes in level 1 to the next and second-next

node; nodes in level 2 to the next, second-next and fourth-next nodes; and so forth

- the level of a node is determined entirely by its position in the list

We can reduce the cost of insertion by:

- selecting a random level for the new node, so that the proportion of level 0, level 1,

etc., nodes is roughly preserved

- level 0 nodes point to the next node;

level 1 nodes also point to the next node that belongs to level 1 or higher;

level 2 nodes also point to the next node that belongs to level 2 or higher;

… and so forth

Skip Lists

Data Structures & Algorithms

7

CS@VT ©2000-2009 McQuain

Insertion Example

Empty list configured to provide 1 level:

Insert the value 10; assume that level 1 is selected:

•

Head

10

•

•

Head

Insert the value 5 at level 0 and then insert the value 7 at level 0:

5 7 10

•

•

Head

Skip Lists

Data Structures & Algorithms

8

CS@VT ©2000-2009 McQuain

Insertion Example Continued

Insert the value 12 at level 2:

5 7 10

Head

12

•

•

•

And then insert the value 15 at level 1:

5 7 10

Head

12

•

15

•

•

Consider searching for a few values, say 7 and 15. In the former case, there's no

advantage over a simple list; in the latter, there's a substantial advantage.

Skip Lists

Data Structures & Algorithms

9

CS@VT ©2000-2009 McQuain

Insertion Details

Consider inserting the value 8 into the skip list below, and assume that the new node is

assigned to level 2:

The first step is to search for the largest value already in the list that is less than or equal to

the new value. The new node will become the level-0 successor of that existing node.

To complete the insertion, we must modify pointers to and from the new node.

But which pointers need to be modified?

Precisely the pointers that break the dashed line and are at a level containing the new node.

8

•

•

•

5 7 10

Head

12

•

15

•

•

Skip Lists

Data Structures & Algorithms

10

CS@VT ©2000-2009 McQuain

Remembering "Passing" Pointers

During the search phase, we must remember the nodes that contain pointers that "go past"

the insertion point for the new node.

To do this, we need an array that can hold up to N + 1 node pointers, where N is the

maximum number of levels among the existing list nodes.

5 7 10

Head

12

•

15

•

•

8

•

•

•

Level

2 1 0
As the search proceeds, each time we "drop" a level we

remember the node at which that occurred.

And, of course, we remember the preceding node.

Skip Lists

Data Structures & Algorithms

11

CS@VT ©2000-2009 McQuain

Updating Pointers During Insertion

At this point we have sufficient information to perform the necessary pointer updates.

The pointers from the new node are set using the pointers identified earlier, taking into

account the levels.

Level

2 1 0

5 7 10

Head

12

•

15

•

•

8

Skip Lists

Data Structures & Algorithms

12

CS@VT ©2000-2009 McQuain

Updating Pointers During Insertion

Then, the pointers to the new node are set, again taking levels into account:

In practice, resetting the pointers from and to the new node would be interleaved so only

one pass through the list of "passed" pointers is needed.

Level

2 1 0

5 7 10

Head

12

•

15

•

•

8

Skip Lists

Data Structures & Algorithms

13

CS@VT ©2000-2009 McQuain

Insertion Algorithm

Given a data value (that may or may not occur in the list):

Node* Update[MaximumLevel] ; for remembering "pass" nodes
Node* x := &HeadNode;

for i := MaximumLevel downto 0 do

; go as far as possible on current level
while x->forward[i]->keyField < searchKey do

x := x->forward[i]
endwhile

; search level will now change
Update[i] := x ; remember node for updating later
; drop to previous level (via for loop)

endfor

x := x->forward[0] ; predecessor is in next Node
. . .

Adapted from Pugh, 1990

Skip Lists

Data Structures & Algorithms

14

CS@VT ©2000-2009 McQuain

Insertion Algorithm

The first part of the algorithm has found the predecessor node, now it's time for the

physical insertion:

. . .
if x->keyField = searchKey then

; take action for case of duplicate key value
else

Lvl := randomLevel() ; select random level for new node
if Lvl > MaximumLevel then ; adjust if list needs new level

for i := MaximumLevel + 1 to Lvl do
Update[i] := &HeadNode

endfor
MaximumLevel := Lvl

endif
; create new node
x := makeNode(Lvl, searchKey, Data)
; patch it into the list, updating "pass" pointers
for i := 0 to MaximumLevel do

x->forward[i] := Update[i]
Update[i]->forward[i] := x

endfor
endif

Skip Lists

Data Structures & Algorithms

15

CS@VT ©2000-2009 McQuain

Choosing the Level for a New Node

Each new node may be given a randomly-chosen level, but that will almost certainly be

disastrous because it will lead to lots of unnecessary levels.

There are a number of schemes for restricting the level selection without sacrificing the

degree of randomness that is necessary to achieve a high probability of good performance.

One approach is to "cap" the number of levels; for example if we allow no more than 32

levels then in principle the list can store 232 data values. A small cap is not desirable.

Another approach is "don't worry, be happy". Trust a sensible random scheme to work

out well enough.

Another is to cap the increase, say allow the addition of at most one new level to the list.

In any case, we do want some sort of exponential distribution:

int randomLevel() {

int Level;

for (Level = 0; rand() % 2 == 0; Level++);

return Level;

}

Skip Lists

Data Structures & Algorithms

16

CS@VT ©2000-2009 McQuain

Search Performance

It should be intuitively clear that the "ideal" skip list would give essentially the same

search performance as a binary search; i.e., the average number of comparisons would be

Θ(log N).

But what about the "practical" skip list? Clearly the irregular pattern will not necessarily

be terribly similar to the "ideal" distribution.

In the paper cited on slide 2, Pugh proves that, with high probability, the average number

of comparisons would be Θ(log N) for the "practical" skip list as well.

That is, there is no guarantee that a skip list will always (or ever) provide highly efficient

search, but in all likelihood a skip list will provide search costs that are at least roughly

competitive with balanced binary tree structures.

Why consider using a skip list? Primarily because the implementation is far simpler than

that of a good balanced binary tree.

Skip Lists

Data Structures & Algorithms

17

CS@VT ©2000-2009 McQuain

Search Algorithm

Given a data value (that may or may not occur in the list):

The search logic here assumes some relational operators have been supplied for the key

type and some convention for returning an indication of failure.

Node* x := &HeadNode;
for i := MaximumLevel downto 0 do

; go as far as possible on current level
while x->forward[i]->keyField < searchKey do

x := x->forward[i]
endwhile
; drop to previous level (via for loop)

endfor
x := x->forward[0] ; step to next Node
if x->keyField = searchKey then

return x->Data
else

return failure
endif

Adapted from Pugh, 1990

Skip Lists

Data Structures & Algorithms

18

CS@VT ©2000-2009 McQuain

Skip List Deletion

Logically, deleting a node should be the opposite of insertion. The same basic principles

apply:

- first we must find the node that precedes the node to be deleted, if any, remembering

the nodes containing "pass" pointers

- if the succeeding node contains the targeted key value

- update the "pass" pointers that point to the target node

- delete the targeted node

- if necessary, adjust the head node to reduce the number of levels in the list

Skip Lists

Data Structures & Algorithms

19

CS@VT ©2000-2009 McQuain

Deletion Example

Consider deleting the value 10 from the list below:

5 7 10

Head

12

•

15

•

•

Level

2 1 0

Temp

First we must find the preceding node and identify the nodes whose pointers may need to

be reset.

Skip Lists

Data Structures & Algorithms

20

CS@VT ©2000-2009 McQuain

Deletion Example Continued

Next we must reset the pointers to the targeted node "around" it:

Finally, we must deallocate the targeted node.

5 7 10

Head

12

•

15

•

•

Level

2 1 0

Temp

Skip Lists

Data Structures & Algorithms

21

CS@VT ©2000-2009 McQuain

Insert/Delete Performance

Insertion and deletion both begin with a search, which will probably have cost Θ(log N) .

Following the search, the number of pointers that must be updated is no more than twice

the number of levels in the list, which should not be much more than log(N) if level

assignments to new nodes have been done intelligently.

The remaining work (reducing the head structure, etc.) are essentially constant cost…

…aside from the node deletion, which involves a system call. However, deletions are

generally less expensive than allocations.

So, it is reasonable to expect that the cost of insertion and deletion will be Θ(log N).

