
Designing Classes

Data Structures & Algorithms

1

CS@VT ©2000-2010 McQuain

Designing the Classes

Once a set of candidate objects is determined… we must:

Determine which are "real" objects in the system.

Identify their attributes.

- attributes are data

- define what the data is, not how it is to be represented (that comes later)

Identify their responsibilities.

- public services (behaviors) the object must provide

- may imply certain attributes necessary to provide those services

- define what the service is, not how it to be accomplished

- some services may be private, but those are usually identified later

- services are invoked though message passing

Designing Classes

Data Structures & Algorithms

2

CS@VT ©2000-2010 McQuain

Identifying Attributes

An attribute is a single characteristic which is common to all instances of a class.

Look for adjectives and possessive phrases in the requirements document.

Find a general description of the object.

Determine what parts of the description are applicable to the problem domain.

Four categories of attributes:

• descriptive

• naming

• state information

• referential (relationship links)

Designing Classes

Data Structures & Algorithms

3

CS@VT ©2000-2010 McQuain

Eliminating Attributes

Some apparent attributes may be considered independently of the objects — make those

objects in their own right.

• Rumbaugh: if an attribute is changed in the system w/o being part of any entity,

then it should be an object.

Relationships among objects may also have attributes. Do not confuse those with

attributes of the involved objects.

Eliminate minor details that do not affect methods.

Designing Classes

Data Structures & Algorithms

4

CS@VT ©2000-2010 McQuain

Specifying Attributes

An attribute should be atomic (simple).

Eliminate attributes that can be calculated from others.

Eliminate attributes that address normalization, performance, or other implementation

issues.

Verify that the attributes make semantic sense together.

Designing Classes

Data Structures & Algorithms

5

CS@VT ©2000-2010 McQuain

Data Versus State

Definition:

Information processed by the

system

Examples from Minor 1:

a record offset

a GIS record

Data State

Definition:

Information used by system to control

processing

Examples from Minor 1:

type of current command

Designing Classes

Data Structures & Algorithms

6

CS@VT ©2000-2010 McQuain

Identifying Responsibilities

Look for verb in the requirements document — usually this will define services of the

object of the sentence

E.g. Quarterback throws the ball.

This defines a service for the ball, provided by the quarterback.

Look at user scenarios — different ways the system components can be used.

Look at each feature — require services of many objects.

Designing Classes

Data Structures & Algorithms

7

CS@VT ©2000-2010 McQuain

Specifying Responsibilities

Name the service to match the external request for the service.

• reportFID()

• serveNextCommand()

• getRecordAtOffset()

Identify the information and/or entities necessary to provide the service.

• GIS record object

• command file, command file processor

Identify the responses, if any, that the service will generate.

• feature ID (cannot fail unless object not initialized)

• no more commands in file

• invalid file offset

Designing Classes

Data Structures & Algorithms

8

CS@VT ©2000-2010 McQuain

Example: File Navigation Project

Consider the GISRecord class:

Name: GISRecord

Attributes:

FeatureID

FeatureName

. . .

(or just a single String object?)

Responsibilities:

Report FeatureID

Provide displayable representation

. . .

Further questions:

When are the

attributes set?

Which of the

attributes are

mutable?

Designing Classes

Data Structures & Algorithms

9

CS@VT ©2000-2010 McQuain

Example: File Navigation Project

Consider the CommandParser class:

Name: CommandParser

Attributes:

RandomAccessFile (on commands file)

Responsibilities:

Report next command, if any

Transformation of command from raw form to

internal form

. . .

Designing Classes

Data Structures & Algorithms

10

CS@VT ©2000-2010 McQuain

Example: File Navigation Project

Consider the CommandProcessor class:

Name: CommandProcessor

Attributes:

FileWriter (on log file)

(assoc to) GISRecordFileParser object

Responsibilities:

Determine command type

Carry out command

. . .

Designing Classes

Data Structures & Algorithms

11

CS@VT ©2000-2010 McQuain

Guidelines for Designing the Classes

We need a systematic way of determining the attributes and responsibilities of a class.

Otherwise, we run a large risk of missing essential features.

To identify attributes and responsibilities the designer must ask the right questions

regarding the system being designed.

We can provide some guidance in choosing what questions to ask…

Designing Classes

Data Structures & Algorithms

12

CS@VT ©2000-2010 McQuain

Design Perspectives

specification

Behavioral

Structural

Informational

Emphasizes actions

in system

Emphasizes

relationships among

components

Emphasizes role of

information/data/state

and how it’s

manipulated

Kafura

Designing Classes

Data Structures & Algorithms

13

CS@VT ©2000-2010 McQuain

Example: File Navigation Project

Behavioral (actions):

– file offsets of GIS records are reported (by who?)

– GIS records are retrieved from the data file (by who?)

Structural (relationships):

– GISRecordFileParser knows about the GIS record file

– CommandParser knows about the command file

– CommandProcessor knows about the GISRecordFileParser

– Controller knows about the CommandParser and the CommandProcessor

Informational (state):

– a Command may be record_at/exit/??

Designing Classes

Data Structures & Algorithms

14

CS@VT ©2000-2010 McQuain

Behavioral Perspective

Consider some action in a program…

What object...

– initiates action?

What objects...

– help perform action?

– are changed by action?

– are interrogated during action?

Consider retrieving a GIS record…

CommandProcessor...

– initiates the action

GISRecordFileParser…

– performs the action

No objects or state information…

– are changed* by the action

Patron List…

– is interrogated during the action

Designing Classes

Data Structures & Algorithms

15

CS@VT ©2000-2010 McQuain

Behavioral Categories

Actor (does something, typically initiates)

Controller

Reactor (system events, external & user events)

Controller, CommandProcessor (?)

Agent (messenger, server, finder, communicator)

possibly CommandParser, GISRecordFileparser

Transformer (data formatter, data filter)

possible CommandParser, GISRecordFileParser

Designing Classes

Data Structures & Algorithms

16

CS@VT ©2000-2010 McQuain

Structural Perspective

What objects...

– are involved in relationship?

– are necessary to sustain (implement, realize, maintain) relationship?

What objects not in relationship...

– are aware of and exploit relationship?

Consider a relationship: CommandProcessor knows GISRecordParser

Controller…

– is involved in establishing the relationship

??…

– is necessary to sustain the relationship

Controller...

– is aware of and exploits the relationship

Designing Classes

Data Structures & Algorithms

17

CS@VT ©2000-2010 McQuain

Structural Categories

Acquaintance (symmetric, asymmetric)

– Controller knows about CommandProcessor, asymmetric relationship

Containment (collaborator, controller)

– GISRecordFileParser controls/uses RandomAccessFile

– similar issue with CommandParser

Collection (peer, iterator, coordinator)

– Controller knows and manages CommandParser and CommandProcessor

– no data structrures issues as yet, but they would qualify

Designing Classes

Data Structures & Algorithms

18

CS@VT ©2000-2010 McQuain

Informational Perspective

What objects...

– represent the data or state?

– read data or interrogate state?

– write data or update state?

Consider a state: type of current command

CommandParser and/or CommandProcessor…

– represent (stores) the state information

Designing Classes

Data Structures & Algorithms

19

CS@VT ©2000-2010 McQuain

Example: Preliminary Overall Design

Here's a partial, preliminary design, based on the preceding discussions:

Controller CommandParser

means

"knows about".

CommandProcessor GISRecordFileParser

GISRecord

Command

Command

RandomAccessFile

means

"has a".

StringLong

Long

