You will submit your solution to this assignment to the Curator System (as HW0 4). Your solution must be either a plain text file (e.g., NotePad) or a typed MS Word document; submissions in other formats will not be graded.

Credit will only be given if you show relevant work.

1. [50 points] Apply Dijkstra's SSAD algorithm to find the shortest distance from vertex 0 to every other vertex in the graph shown in Figure 1 below. For uniformity, when choosing which node to visit next, take them in increasing numeric order. You must show supporting work in the form of a table; see the course website for an acceptable format. You do not need to list the paths in your answer, just the minimum distances.

Note: the example in the course notes shows an undirected graph, but the algorithm applies to directed graphs as well, and in the obvious manner.

2. [50 points] Using a depth-first traversal, find a topological ordering of the nodes in the graph shown in Figure 2 below. For uniformity, when choosing which node to visit next, take them in increasing numeric order. You must show supporting work; see the course website for an acceptable format.

Starting at vertex 0, on the first pass of DFS I mark 0, proceed to 1 and mark it, proceed to 2 and mark it, proceed to 3 and mark it, and proceed to 10 and mark it. 10 has no unmarked successors, so I prefix it to my solution (10). Then I backtrack to 3, which has no unmarked successors, so I prefix it to my solution (310). Continuing, I backtrack through 2 and 1, prefixing them to my solution (1 2310), until I reach 0 again. From O I proceed to and mark 4, which has no unmarked successors, so I prefix 4 to my solution (4 12310). I then backtrack to 0, which now has no unmarked successors, so I prefix 0 to my solution, and I conclude the first pass of DFS with the partial solution: 0412310.

I start my second pass at vertex 5, marking it; then I proceed to 9 and mark it, then to 6 and mark it. 6 has no unmarked successors, so I prefix it to my solution (6 04123 10), then backtrack to 9, which has no unmarked successors and prefix that to my solution (9 604123 10), and finally backtrack to 5 , which has no unmarked successors, and prefix 5 to my solution, concluding the second pass with the partial solution: (5960412310).

The final two passes start at 7 and 8, respectively; neither of those has an unmarked successor, so I prefix them to the solution, obtaining the complete solution: (875960412310).

