You will submit your solution to this assignment to the Curator System (as HWO2). Your solution must be either a plain text file (e.g., NotePad) or a typed MS Word document; submissions in other formats will not be graded.

Except as noted, credit will only be given if you show relevant work.

1. [25 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of the body of the following function.
```
void Mystery(int M[N][N], const int N) {
    for (int R = 0; R < N; R++) { // 1 before, 2 per pass, 1 to exit
        for (int C = 1; C < N; C++) { // 1 before, 2 per pass, 1 to exit
                if (M[R][C-1] < M[R][C]) // 6: 4 index, one arith, one comp
                M[R][C-1] = M[R][C]; // 6: 4 index, one arith, 1 assign
                else {
                M[R][C] = M[R][C-1]; // 6: 4 index, one arith, 1 assign
                M[R][C-1] = 0; // 4: 2 index, one arith, 1 assign
            }
        }
    }
}
```

State both a complexity function $\mathrm{T}(\mathrm{N})$ and the Θ-complexity of $\mathrm{T}(\mathrm{N})$.
According to the counts in the comments added above, and the rules for iteration and selection from the course notes, the operation count is given by:

$$
\begin{aligned}
T(N) & =1+\sum_{R=0}^{N-1}\left(2+1+\sum_{C=1}^{N-1}(2+6+\max (6,10))+1\right)+1 \\
& =\sum_{R=0}^{N-1}\left(\sum_{C=1}^{N-1}(14)+4\right)+2 \\
& =\sum_{R=0}^{N-1}(14 N+4)+2 \\
& =\sum_{R=1}^{N-1}(14 N+4)+4+2 \\
& =14 \sum_{R=1}^{N-1} N+\sum_{R=1}^{N-1} 4+6 \\
& =14 N(N-1)+4(N-1)+6 \\
& =14 N^{2}-10 N+2
\end{aligned}
$$

From the theorems in the course notes, it's immediately apparent that $T(N)$ is $\Theta\left(N^{2}\right)$.
2. [25 points] Consider the following function, where α is an unknown positive constant:

$$
f(n)=n^{\alpha}+\log n
$$

Use Theorem 8 from the course notes on asymptotics to prove each of the following facts:
a) $f(n)$ is $\Theta\left(n^{\alpha}\right)$ if $\alpha>0$

We can begin by setting up the appropriate limit to apply Theorem 8:

$$
\lim _{n \rightarrow \infty} \frac{n^{\alpha}+\log n}{n^{\alpha}}=\lim _{n \rightarrow \infty}\left(1+\frac{\log n}{n^{\alpha}}\right)=1+\lim _{n \rightarrow \infty}\left(\frac{\log n}{n^{\alpha}}\right)
$$

From here, we need to know that the last limit is indeterminate, since the numerator and denominator are both going to infinity. Hence, we can apply l'Hopital's rule:

$$
\lim _{n \rightarrow \infty} \frac{n^{\alpha}+\log n}{n^{\alpha}}=1+\lim _{n \rightarrow \infty}\left(\frac{\log n}{n^{\alpha}}\right)=1+\lim _{n \rightarrow \infty}\left(\frac{1 / n \ln 2}{\alpha n^{\alpha-1}}\right)=1+\lim _{n \rightarrow \infty}\left(\frac{\ln 2}{\alpha n^{\alpha}}\right)=1+0=1
$$

So, by Theorem $8, n^{\alpha}+\log n$ is $\Theta\left(n^{\alpha}\right)$.
b) $f(n)$ is $\Theta(\log n)$ if $\alpha<0$

We can begin by setting up the appropriate limit to apply Theorem 8:

$$
\lim _{n \rightarrow \infty} \frac{n^{\alpha}+\log n}{\log n}=\lim _{n \rightarrow \infty}\left(\frac{n^{\alpha}}{\log n}+1\right)=1+\lim _{n \rightarrow \infty}\left(\frac{n^{\alpha}}{\log n}\right)
$$

Now, since $\alpha<0$, we can rewrite the quotient in the limit as shown below, and since we know that n is raised to a positive value in that quotient, we can immediately see that the limit follows:

$$
\lim _{n \rightarrow \infty} \frac{n^{\alpha}+\log n}{\log n}=1+\lim _{n \rightarrow \infty}\left(\frac{n^{\alpha}}{\log n}\right)=1+\lim _{n \rightarrow \infty}\left(\frac{1}{n^{-\alpha} \log n}\right)=1+0=1
$$

So, by Theorem $8, n^{\alpha}+\log n$ is $\Theta(\log n)$.
3. [25 points] For each part, determine the simplest possible function $g(n)$ such that the given function is $\Theta(g)$. No justification is necessary, but you might have to do some analysis using the theorems from the notes.
a) $a(n)=14 n^{2}+3 n \log n$

By the theorems, the dominant term here is $14 n^{2}$, and so $a(n)$ is $\Theta\left(n^{2}\right)$.
b) $b(n)=3 n^{2} \log n$

By the theorems, $b(n)$ is $\Theta\left(n^{2} \log n\right)$..
c) $c(n)=3 n \log ^{2} n+3 n^{2} \log n$

The theorems don't cover this directly; since \boldsymbol{n} dominates $\log \mathrm{n}$, from the list of common terms, we might guess that the dominant term here is $n^{2} \log n$. We can validate that guess by computing the relevant limit and applying Theorem 8:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{3 n \log ^{2} n+3 n^{2} \log n}{n^{2} \log n} & =\lim _{n \rightarrow \infty}\left(\frac{3 n \log ^{2} n}{n^{2} \log n}+1\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{3 \log n}{n}+1\right)=\lim _{n \rightarrow \infty}\left(\frac{3 / n \ln 2}{1}+1\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{3}{n \ln 2}+1\right)=0+1=1
\end{aligned}
$$

d) $d(n)=10 n^{2}+2^{n}$

By the theorems from the notes, $d(n)$ is $\Theta\left(2^{n}\right)$.
e) $e(n)=\frac{1}{n}$

This is so easy it may have been confusing. There's only one term, and Θ is reflexive, so $e(n)$ is $\frac{1}{n}$.
4. [25 points] Suppose that executing an algorithm on input of size N requires executing $T(N)=3 N \log N+16 N$ instructions. How long would it take to execute this algorithm on hardware capable of carrying out 2^{25} instructions per second if $\mathrm{N}=2^{30}$? (Give your answer in hours, minutes and seconds, to the nearest second.)

The total number of instructions executed would be:

$$
T\left(2^{30}\right)=3 \cdot 2^{30} \log 2^{30}+16 \cdot 2^{30}=3 \cdot 2^{30} \cdot 30+16 \cdot 2^{30}=106 \cdot 2^{30}
$$

The time required would b e:

$$
\frac{T\left(2^{30}\right)}{2^{25}}=\frac{106 \cdot 2^{30}}{2^{25}}=106 \cdot 2^{5}=3392 \text { seconds }
$$

And that is $\mathbf{5 6}$ minutes $\mathbf{3 2}$ seconds.

