You will submit your solution to this assignment to the Curator System (as HW02). Your solution must be either a plain text file (e.g., NotePad) or a typed MS Word document; submissions in other formats will not be graded.

Except as noted, credit will only be given if you show relevant work.

1. [25 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of the body of the following function.
```
void Mystery(int M[N][N], const int N) {
    for (int R = 0; R < N; R++) {
        for (int C = 1; C < N; C++) {
            if (M[R][C-1] < M[R][C])
                M[R][C-1] = M[R][C];
            else {
                M[R][C] = M[R][C-1];
                M[R][C-1] = 0;
            }
        }
    }
}
```

State both a complexity function $\mathrm{T}(\mathrm{N})$ and the Θ-complexity of $\mathrm{T}(\mathrm{N})$.
2. [25 points] Consider the following function, where α is an unknown positive constant:

$$
f(n)=n^{\alpha}+\log n
$$

Use Theorem 8 from the course notes on asymptotics to prove each of the following facts:
a) $\quad f(n)$ is $\Theta\left(n^{\alpha}\right)$ if $\alpha>0$
b) $\quad f(n)$ is $\Theta(\log n)$ if $\alpha<0$
3. [25 points] For each part, determine the simplest possible function $g(n)$ such that the given function is $\Theta(g)$. No justification is necessary, but you might have to do some analysis using the theorems from the notes.
a) $a(n)=14 n^{2}+3 n \log n$
b) $b(n)=3 n^{2} \log n$
c) $c(n)=3 n \log ^{2} n+3 n^{2} \log n$
d) $d(n)=10 n^{2}+2^{n}$
e) $e(n)=\frac{1}{n}$
4. [25 points] Suppose that executing an algorithm on input of size N requires executing $T(N)=3 N \log N+16 N$ instructions. How long would it take to execute this algorithm on hardware capable of carrying out 2^{25} instructions per second if $\mathrm{N}=2^{30}$? (Give your answer in hours, minutes and seconds, to the nearest second.)

