
CS 3114 Data Structures & Algorithms Major Project

 1

Geographic Information System

Geographic information systems organize information pertaining to geographic features and provide various kinds of access
to the information. A geographic feature may possess many attributes (see below). In particular, a geographic feature has a
specific location.

There are a number of ways to specify location. For this project, we will use latitude and longitude, which will allow us to
deal with geographic features at any location on earth. A reasonably detailed tutorial on latitude and longitude can be found
in the Wikipedia at en.wikipedia.org/wiki/Latitude and en.wikipedia.org/wiki/Longitude.

We will employ public data obtained from the Geographic Names Information System (geonames.usgs.gov). Each data file
consists of a list of ASCII records, each describing a single geographic feature with many attributes.

More precisely, each GIS record may contain the following fields in the indicated order (all are mandatory unless indicated
otherwise):

Figure 1: Geographic Data Fields

Significance Type/Format Comments
Feature ID number (FID) non-negative integer unique identifier for this geographic feature
State alphabetic code two-characters US postal code abbreviation
Feature name string standard name of feature
Feature type string descriptive classification of feature
County name string county in which feature occurs
State number code non-negative integer numeric code for state
County number code non-negative integer numeric code for county
Primary latitude (DMS) DDMMSS['N' | 'S'] feature latitude in DMS format or UNKNOWN
Primary longitude (DMS) DDDMMSS['E' | 'W'] feature longitude in DMS format or UNKNOWN
Primary latitude (dec deg) decimal number feature latitude in decimal format or UNKNOWN
Primary longitude (dec deg) decimal number feature longitude in decimal format or UNKNOWN
Source latitude (DMS) DDMMSS['N' | 'S'] latitude of feature source in DMS format, optional
Source longitude (DMS) DDDMMSS['E' | 'W'] longitude of feature source in DMS format, optional
Source latitude (dec deg) decimal number latitude of feature source in decimal format, optional
Source longitude (dec deg) decimal number longitude of feature source in decimal format, optional
Feature elevation integer altitude above/below sea level, optional
Est. feature population non-negative integer estimated population of feature, optional
Federal status string ???, optional
Cell string ???

In the GIS record file, each record will occur on a single line, and the fields will be separated by pipe (‘|’) symbols. Some
sample records are shown below.

GIS record files are guaranteed to conform to this syntax, so there is no explicit requirement that you validate the files. On
the other hand, some error-checking during parsing may help you detect errors in your parsing logic.

CS 3114 Data Structures & Algorithms Major Project

 2

Figure 2: Sample Geographic Data
Records

Note that some record fields are optional, and
that when there is no given value for a field,
there are still delimiter symbols for it.

1
4
9
5
1
8
2
|
V
A
|
A
c
r
e

o
f

R
o
c
k
s
|
s
u
m
m
i
t
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
1
6
3
6
N
|
0
8
0
1
6
0
8
W
|
3
7
.
2
7
6
6
7
|
-
8
0
.
2
6
8
8
9
|
|
|
|
|
2
2
7
0
|
|
|
M
c
D
o
n
a
l
d
s

M
i
l
l

1
6
7
4
4
5
1
|
V
A
|
A
g
n
e
w

H
a
l
l
|
b
u
i
l
d
i
n
g
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
1
3
2
9
N
|
0
8
0
2
5
2
8
W
|
3
7
.
2
2
4
7
2
|
-
8
0
.
4
2
4
4
4
|
|
|
|
|
|
|
|
B
l
a
c
k
s
b
u
r
g

1
4
8
1
2
6
9
|
V
A
|
A
i
k
e
n

D
a
m

H
o
l
l
o
w
|
v
a
l
l
e
y
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
2
0
5
6
N
|
0
8
0
1
7
4
1
W
|
3
7
.
3
4
8
8
9
|
-
8
0
.
2
9
4
7
2
|
3
7
1
9
3
2
N
|
0
8
0
1
7
5
2
W
|
3
7
.
3
2
5
5
6
|
-
8
0
.
2
9
7
7
8
|
|
|
|
M
c
D
o
n
a
l
d
s

M
i
l
l

1
6
7
4
4
5
2
|
V
A
|
A
i
r
p
o
r
t

A
c
r
e
s

(
s
u
b
d
i
v
i
s
i
o
n
)
|
p
p
l
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
1
2
3
8
N
|
0
8
0
2
4
2
7
W
|
3
7
.
2
1
0
5
6
|
-
8
0
.
4
0
7
5
|
|
|
|
|
2
1
2
5
|
|
|
B
l
a
c
k
s
b
u
r
g

1
4
6
2
3
8
9
|
V
A
|
A
l
b
u
r
n

H
i
g
h

S
c
h
o
o
l
|
s
c
h
o
o
l
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
0
3
4
1
N
|
0
8
0
2
6
3
3
W
|
3
7
.
0
6
1
3
9
|
-
8
0
.
4
4
2
5
|
|
|
|
|
|
|
|
R
i
n
e
r

1
6
7
4
4
5
3
|
V
A
|
A
l
l
e
g
h
a
n
y

A
d
d
i
t
i
o
n

(
s
u
b
d
i
v
i
s
i
o
n
)
|
p
p
l
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
0
7
4
4
N
|
0
8
0
2
3
5
0
W
|
3
7
.
1
2
8
8
9
|
-
8
0
.
3
9
7
2
2
|
|
|
|
|
2
1
2
0
|
|
|
B
l
a
c
k
s
b
u
r
g

1
4
6
2
3
9
8
|
V
A
|
A
l
l
e
g
h
a
n
y

C
h
u
r
c
h
|
c
h
u
r
c
h
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
0
7
2
6
N
|
0
8
0
1
6
1
0
W
|
3
7
.
1
2
3
8
9
|
-
8
0
.
2
6
9
4
4
|
|
|
|
|
|
|
|
P
i
l
o
t

1
4
6
2
3
9
9
|
V
A
|
A
l
l
e
g
h
a
n
y

C
h
u
r
c
h
|
c
h
u
r
c
h
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
0
9
2
5
N
|
0
8
0
1
5
1
9
W
|
3
7
.
1
5
6
9
4
|
-
8
0
.
2
5
5
2
8
|
|
|
|
|
|
|
|
I
r
o
n
t
o

1
4
8
1
2
7
6
|
V
A
|
A
l
l
e
g
h
a
n
y

C
h
u
r
c
h
|
c
h
u
r
c
h
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
0
9
3
0
N
|
0
8
0
2
5
0
7
W
|
3
7
.
1
5
8
3
3
|
-
8
0
.
4
1
8
6
1
|
|
|
|
|
|
|
|
B
l
a
c
k
s
b
u
r
g

1
6
7
4
4
5
4
|
V
A
|
A
l
l
e
g
h
a
n
y

H
e
i
g
h
t
s

(
s
u
b
d
i
v
i
s
i
o
n
)
|
p
p
l
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
1
5
0
9
N
|
0
8
0
2
4
4
7
W
|
3
7
.
2
5
2
5
|
-
8
0
.
4
1
3
0
6
|
|
|
|
|
2
2
2
0
|
|
|
N
e
w
p
o
r
t

1
6
7
4
4
5
5
|
V
A
|
A
l
l
e
g
h
a
n
y

S
c
h
o
o
l

(
h
i
s
t
o
r
i
c
a
l
)
|
s
c
h
o
o
l
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
0
8
1
2
N
|
0
8
0
1
5
1
9
W
|
3
7
.
1
3
6
6
7
|
-
8
0
.
2
5
5
2
8
|
|
|
|
|
|
|
|
I
r
o
n
t
o

1
6
7
4
4
5
6
|
V
A
|
A
l
l
e
g
h
a
n
y

S
c
h
o
o
l

(
h
i
s
t
o
r
i
c
a
l
)
|
s
c
h
o
o
l
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
0
9
2
1
N
|
0
8
0
2
4
3
0
W
|
3
7
.
1
5
5
8
3
|
-
8
0
.
4
0
8
3
3
|
|
|
|
|
|
|
|
B
l
a
c
k
s
b
u
r
g

1
6
7
4
4
5
7
|
V
A
|
A
l
l
e
g
h
a
n
y

S
p
r
i
n
g

S
c
h
o
o
l

(
h
i
s
t
o
r
i
c
a
l
)
|
s
c
h
o
o
l
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
0
7
0
6
N
|
0
8
0
1
6
0
2
W
|
3
7
.
1
1
8
3
3
|
-
8
0
.
2
6
7
2
2
|
|
|
|
|
|
|
|
P
i
l
o
t

1
4
6
2
4
0
0
|
V
A
|
A
l
l
e
g
h
a
n
y

S
p
r
i
n
g
s
|
p
p
l
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
0
7
4
1
N
|
0
8
0
1
5
5
5
W
|
3
7
.
1
2
8
0
6
|
-
8
0
.
2
6
5
2
8
|
|
|
|
|
1
3
9
9
|
|
|
I
r
o
n
t
o

1
4
8
1
2
8
7
|
V
A
|
A
l
l
e
n

H
o
l
l
o
w
|
v
a
l
l
e
y
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
2
0
0
1
N
|
0
8
0
1
9
3
9
W
|
3
7
.
3
3
3
6
1
|
-
8
0
.
3
2
7
5
|
3
7
1
8
4
9
N
|
0
8
0
1
9
3
8
W
|
3
7
.
3
1
3
6
1
|
-
8
0
.
3
2
7
2
2
|
|
|
|
M
c
D
o
n
a
l
d
s

M
i
l
l

1
4
6
2
4
0
8
|
V
A
|
A
l
l
e
n

H
o
l
l
o
w
|
v
a
l
l
e
y
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
0
8
4
9
N
|
0
8
0
1
6
1
4
W
|
3
7
.
1
4
6
9
4
|
-
8
0
.
2
7
0
5
6
|
3
7
0
9
3
7
N
|
0
8
0
1
6
3
6
W
|
3
7
.
1
6
0
2
8
|
-
8
0
.
2
7
6
6
7
|
|
|
|
I
r
o
n
t
o

1
6
7
4
4
5
8
|
V
A
|
A
l
t
o
o
n
a

S
c
h
o
o
l

(
h
i
s
t
o
r
i
c
a
l
)
|
s
c
h
o
o
l
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
0
4
2
5
N
|
0
8
0
1
8
0
5
W
|
3
7
.
0
7
3
6
1
|
-
8
0
.
3
0
1
3
9
|
|
|
|
|
|
|
|
P
i
l
o
t

1
6
7
4
4
5
9
|
V
A
|
A
m
b
l
e
r

J
o
h
n
s
t
o
n

H
a
l
l
|
b
u
i
l
d
i
n
g
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
1
3
2
3
N
|
0
8
0
2
5
1
7
W
|
3
7
.
2
2
3
0
6
|
-
8
0
.
4
2
1
3
9
|
|
|
|
|
|
|
|
B
l
a
c
k
s
b
u
r
g

1
4
8
1
3
1
4
|
V
A
|
A
n
d
e
r
s
o
n

C
e
m
e
t
e
r
y
|
c
e
m
e
t
e
r
y
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
1
5
1
9
N
|
0
8
0
2
0
5
8
W
|
3
7
.
2
5
5
2
8
|
-
8
0
.
3
4
9
4
4
|
|
|
|
|
|
|
|
M
c
D
o
n
a
l
d
s

M
i
l
l

1
6
7
4
4
6
0
|
V
A
|
A
p
p
e
r
s
o
n

P
a
r
k

(
s
u
b
d
i
v
i
s
i
o
n
)
|
p
p
l
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
1
4
2
5
N
|
0
8
0
2
4
1
3
W
|
3
7
.
2
4
0
2
8
|
-
8
0
.
4
0
3
6
1
|
|
|
|
|
2
2
2
0
|
|
|
B
l
a
c
k
s
b
u
r
g

1
6
7
4
4
6
1
|
V
A
|
A
p
p
l
e

A
c
r
e
s

(
s
u
b
d
i
v
i
s
i
o
n
)
|
p
p
l
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
0
9
2
3
N
|
0
8
0
2
5
0
8
W
|
3
7
.
1
5
6
3
9
|
-
8
0
.
4
1
8
8
9
|
|
|
|
|
2
1
3
0
|
|
|
B
l
a
c
k
s
b
u
r
g

1
6
7
4
4
6
2
|
V
A
|
A
s
b
u
r
y

M
e
t
h
o
d
i
s
t

C
h
u
r
c
h
|
c
h
u
r
c
h
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
0
8
0
0
N
|
0
8
0
2
4
3
6
W
|
3
7
.
1
3
3
3
3
|
-
8
0
.
4
1
|
|
|
|
|
|
|
|
B
l
a
c
k
s
b
u
r
g

1
6
7
4
4
6
3
|
V
A
|
A
t
k
i
n
s
o
n

A
c
r
e
s

(
s
u
b
d
i
v
i
s
i
o
n
)
|
p
p
l
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
0
7
1
2
N
|
0
8
0
2
4
3
6
W
|
3
7
.
1
2
|
-
8
0
.
4
1
|
|
|
|
|
2
0
6
0
|
|
|
R
i
n
e
r

1
4
8
1
3
6
3
|
V
A
|
A
u
s
t
i
n

H
o
l
l
o
w
|
v
a
l
l
e
y
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
1
6
2
1
N
|
0
8
0
1
8
2
2
W
|
3
7
.
2
7
2
5
|
-
8
0
.
3
0
6
1
1
|
3
7
1
6
1
7
N
|
0
8
0
1
6
5
7
W
|
3
7
.
2
7
1
3
9
|
-
8
0
.
2
8
2
5
|
|
|
|
M
c
D
o
n
a
l
d
s

M
i
l
l

1
4
6
2
6
9
5
|
V
A
|
B
a
i
n

C
h
a
p
e
l
|
c
h
u
r
c
h
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
0
5
3
6
N
|
0
8
0
3
1
5
0
W
|
3
7
.
0
9
3
3
3
|
-
8
0
.
5
3
0
5
6
|
|
|
|
|
2
1
1
6
|
|
|
R
a
d
f
o
r
d

S
o
u
t
h

1
6
7
4
4
6
4
|
V
A
|
B
a
n
g
s

(
h
i
s
t
o
r
i
c
a
l
)
|
p
p
l
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
0
8
2
8
N
|
0
8
0
2
4
0
7
W
|
3
7
.
1
4
1
1
1
|
-
8
0
.
4
0
1
9
4
|
|
|
|
|
2
0
2
9
|
|
|
B
l
a
c
k
s
b
u
r
g

1
6
7
4
4
6
5
|
V
A
|
B
a
r
r
i
n
g
e
r

H
a
l
l
|
b
u
i
l
d
i
n
g
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
1
3
3
4
N
|
0
8
0
2
5
0
2
W
|
3
7
.
2
2
6
1
1
|
-
8
0
.
4
1
7
2
2
|
|
|
|
|
|
|
|
B
l
a
c
k
s
b
u
r
g

1
4
8
1
4
7
6
|
V
A
|
B
a
r
r
i
n
g
e
r

M
o
u
n
t
a
i
n
|
s
u
m
m
i
t
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
0
8
1
7
N
|
0
8
0
2
8
0
9
W
|
3
7
.
1
3
8
0
6
|
-
8
0
.
4
6
9
1
7
|
|
|
|
|
2
3
4
2
|
|
|
B
l
a
c
k
s
b
u
r
g

1
4
7
7
0
9
7
|
V
A
|
B
a
s
h
a
m
|
p
p
l
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
0
2
1
0
N
|
0
8
0
2
0
3
4
W
|
3
7
.
0
3
6
1
1
|
-
8
0
.
3
4
2
7
8
|
|
|
|
|
2
4
3
0
|
|
|
P
i
l
o
t

1
4
8
1
6
0
0
|
V
A
|
B
e
e
k
s

S
c
h
o
o
l
|
s
c
h
o
o
l
|
M
o
n
t
g
o
m
e
r
y
|
5
1
|
1
2
1
|
3
7
1
2
4
9
N
|
0
8
0
2
4
2
3
W
|
3
7
.
2
1
3
6
1
|
-
8
0
.
4
0
6
3
9
|
|
|
|
|
|
|
|
B
l
a
c
k
s
b
u
r
g

CS 3114 Data Structures & Algorithms Major Project

 3

Assignment:

You will implement a system that indexes and provides search features for a file of GIS records, as described above.

Your system will build and maintain several in-memory index data structures to support these operations:

 Retrieving GIS records matching given geographic coordinates
 Retrieving GIS records matching a given feature name and state.
 Retrieving GIS records that fall within a given (rectangular) geographic region.
 Displaying the in-memory indices in a human-readable manner

You will implement a single software system in Java to perform all system functions.

Program Invocation:

The program will take the names of three files from the command line, like this:

java GIS <database file name> <command script file name> <log file name>

The database file should be created as an empty file; note that the specified database file may already exist, in which case the
existing file should be truncated or deleted. If the command script file is not found the program should write an error
message to the console and exit.

Data and File Structures:

There is no guarantee that the GIS record file will not contain two or more distinct records that have the same geographic
coordinates. In fact, this is natural since the coordinates are expressed in the usual DMS system. So, we will not treat
geographic coordinates as a primary key.

The GIS records will be indexed by the FeatureName and State (abbreviation), using a hash table for the physical
organization. See the following section for details of the hash table requirements. The hash table entries will store a
FeatureName and State and the file offset(s) of the matching record(s). Since each GIS record occupies one line in the file,
it is a trivial matter to locate and read a record given nothing but the file offset at which the record begins.

The GIS records will also be indexed by geographic coordinate, using a bucket PR quadtree for the physical organization. In
a bucket PR quadtree, each leaf stores up to K data objects (for some fixed value of K). Upon insertion, if the added value
would fall into a leaf that is already full, then the region corresponding to the leaf will be partitioned into quadrants and the
K+1 data objects will be inserted into those quadrants as appropriate. As is the case with the regular PR quadtree, this may
lead to a sequence of partitioning steps, extending the relevant branch of the quadtree by multiple levels. In this project, K
will probably equal 4, but I reserve the right to specify a different bucket size with little notice.

The index entries held in the quadtree will store a geographic coordinate and a collection of the file offsets of the matching
GIS records in the database file.

Note: do not confuse the bucket size with any limit on the number of GIS records that may be associated with a single
geographic coordinate. A quadtree node can contain index objects for up to K different geographic coordinates. Each such
object can contain references to an unlimited number of different GIS records.

When importing GIS records (see below), your program will make one complete pass through the specified GIS record file.
Aside from where specific data structures are required, you may use any suitable Java library containers you like.

Each index object should have the ability to supply a nicely-formatted representation of itself as a String object, or to write
a nicely-formatted display of itself to an output stream.

CS 3114 Data Structures & Algorithms Major Project

 4

There will be a buffer pool serving as a front-end for the database file. Retrieving a GIS record from the database file must
be managed through the buffer pool. During an import operation, records will be written to the database file by bypassing the
buffer pool; the buffer pool would not have much effect on performance during imports.

Note: your implementation will not simply store the complete GIS records in memory. The file on disk is only place that
complete records will exist, aside from a small number of temporary objects created when servicing search requests.

The PR quadtree implementation should follow good design practices, and its interface should be somewhat similar to that of
the BST. You are expected to implement different types for the leaf and internal nodes, with appropriate data membership
for each, and an abstract base type from which they are both derived. Of course, these were all requirements for the related
minor project.

You must be able to display the PR quadtree in a readable manner. PR quadtree display code is given in the course notes. A
display that does not clearly indicate the structure of the tree, and the relationships between its nodes, is not acceptable.

Hash Table Details:

The hash table must use a contiguous physical structure (array). The initial size of the table will be 1019, and the table will
resize itself automatically. The precise logic for resizing is up to you; if you want to match my output logs, increase the size
of the table to the next value in the list below when the table becomes 70% full:

1019, 2027, 4079, 8123, 16267, 32503, 65011, 130027, 260111, 520279, 1040387, 2080763, 4161539, 832315 , 16646323

Your table will use some form of quadratic probing to resolve collisions. Given the extremely low probability that quadratic
probing will fail to find an empty slot in a reasonable number of steps, there will be no mandatory fall-back strategy.
However, you must ensure than every record is actually inserted into the table. The table sizes given above are all primes of
the form 4k + 3, and if you use the quadratic function (n^2 + n)/2 to compute the probe slots, an empty slot will always be
found.

You will use the elfhash() function from the course notes, and apply it to the concatenation of the FeatureName and
State (abbreviation) field of the data records.

You must be able to display the contents of the hash table in a readable manner.

Buffer Pool Details:

The buffer pool for the database file should be capable of buffering up to 20 records, and will use LRU replacement. You
may use any structure you like to organize the pool slots; however, since the pool will have to deal with record replacements,
some structures will be more efficient (and simpler) to use.

It is up to you to decide whether your buffer pool stores interpreted or raw data.

You must be able to display the contents of the buffer pool, listed from MRU to LRU entry, in a readable manner.

A Note on Coordinates and Spatial Regions:

It is important to remember that there are fundamental differences between the notion that a geographic feature has a specific
location (which may be thought of as a point) and the notion that each node of the PR quadtree corresponds to a particular
sub-region of the coordinate space (which will usually contain many points).

In this assignment, coordinates of geographic features are specified as latitude/longitude pairs, and the minimum resolution is
one second of arc. Thus, you may think of the geographic coordinates as being specified by a pair of integer values.

On the other hand, the boundaries of the sub-regions are determined by performing arithmetic operations, including division,
starting with the values that define the boundaries of the “world”. Unless the dimensions of the world happen to be powers

CS 3114 Data Structures & Algorithms Major Project

 5

of 2, this can quickly lead to regions whose boundaries cannot be expressed exactly as integer values. You may use floating-
point values or integer values to represent region boundaries when computing region boundaries during splitting and quadtree
traversals. If you use integers, be careful not to unintentionally create "gaps" between regions.

Your implementation should view the boundary between regions as belonging to one of those regions. The choice of a
particular rule for handling this situation is left to you. The specification for the minor PR quadtree project describes how I
made that decision, but there is absolutely no requirement that you follow the same approach.

When carrying out a region search, you must determine whether the search region overlaps with the region corresponding to
a subtree node before descending into that subtree. The Java libraries include a Rectangle class which could be (too) useful.
You may make use of the Rectangle class, but you will be penalized 10% if your submitted solution makes use of any of the
following Rectangle methods: contains(), intersection(), and intersects(). Note though, that it is acceptable to make use
of those methods during development, but you must implement your own versions of them in your final submission.

Finally, do not interpret longitude/latitude values sloppily. In particular, do not represent a value given in DMS format, like
1214322W, as the integer -1214322. (The negative sign comes from the fact that it's west longitude, and that's fine.) Some
students have encountered problems in the past when using that approach. Instead, convert the given value to total seconds;
in this case that would be -438202 seconds.

Other System Elements:

There should be an overall controller that validates the command line arguments and manages the initialization of the various
system components. The controller should hand off execution to a command processor that manages retrieving commands
from the script file, and making the necessary calls to other components in order to carry out those commands.

Naturally, there should be a data type that models a GIS record.

There may well be additional system elements, whether data types or data structures, or system components that are not
mentioned here. The fact no additional elements are explicitly identified here does not imply that you will not be expected to
analyze the design issues carefully, and to perhaps include such elements.

Aside from the command-line interface, there are no specific requirements for interfaces of any of the classes that will make
up your GIS; it is up to you to analyze the specification and come up with an appropriate set of classes, and to design their
interfaces to facilitate the necessary interactions. It is probably worth pointing out that an index (e.g., a geographic
coordinate index) should not simply be a naked container object (e.g, quadtree); if that's not clear to you, think more carefully
about what sort of interface would be appropriate for an index, as opposed to a container.

Command File:

The execution of the program will be driven by a script file. Lines beginning with a semicolon character (';') are comments
and should be ignored. Each non-comment line of the command file will specify one of the commands described below.
Each line consists of a sequence of tokens, which will be separated by single tab characters. A newline character will
immediately follow the final token on each line. The command file is guaranteed to conform to this specification, so you do
not need to worry about error-checking when reading it. The following commands must be supported:

world<tab><westLong><tab><eastLong><tab><southLat><tab><northLat>

This will be the first command in the file, and will occur once. It specifies the boundaries of the coordinate space to be
modeled. The four parameters will be longitude and latitudes expressed in DMS format, representing the vertical and
horizontal boundaries of the coordinate space.

It is likely that the GIS record file will contain records for features that lie outside the specified coordinate space.
Such records should be ignored; i.e., they will not be indexed.

CS 3114 Data Structures & Algorithms Major Project

 6

import<tab><GIS record file>
Add all the GIS records in the specified file to the database file. This means that the records will be appended to the
existing database file, and that those records will indexed in the manner described earlier. When the import is
completed, log the number of entries added to each index, and the longest probe sequence that was needed when
inserting to the hash table.

what_is_at<tab><geographic coordinate>
Log the number of matching records, and all the data fields, properly labeled, in every GIS record in the database file
that matches the given <geographic coordinate>.

what_is<tab><FeatureName><tab><State abbreviation>
Log the number of matching records, and all the data fields in the unique GIS record in the database file that matches
the given <FeatureName> and <State abbreviation>.

what_is_in<tab><geographic coordinate><tab><half-height><tab><half-width>
Log the number of matching records, and all the data fields in the GIS records in the database file whose coordinates
fall within the closed rectangle with the specified height and width, centered at the <geographic coordinate>.
The half-height and half-width are specified as seconds.

debug<tab>[quad | hash | pool]
Log the contents of the specified index structure in a fashion that makes the internal structure and contents of the index
clear. It is not necessary to be overly verbose here, but it would be useful to include information like key values and
file offsets where appropriate.

quit<tab>
Terminate program execution.

If a <geographic coordinate> is specified for a command, it will be expressed as a pair of latitude/longitude values,
expressed in the same DMS format that is used in the GIS record files.

Sample command scripts will be provided on the website. As a general rule, every command should result in some output.
In particular, a descriptive message should be logged if a search yields no matching records.

Log File Description:

Since this assignment will be graded by TAs, rather than the Curator, the format of the output is left up to you. Of course,
your output should be clear, concise, well labeled, and correct. You should begin the log with a few lines identifying
yourself, and listing the names of the input files that are being used.

The remainder of the log file output should come directly from your processing of the command file. You are required to
echo each command that you process to the log file so that it's easy to determine which command each section of your output
corresponds to. Each command should be numbered, starting with 1, and the output from each command should be well
formatted, and delimited from the output resulting from processing other commands. A complete sample log will be posted
shortly on the course website.

Administrative Issues:

Submission:

You will submit this assignment to the Curator System (read the Student Guide), where it will be archived for grading at a
demo with a TA.

For this assignment, you must submit a zip file containing all the Java source code files for your implementation (i.e., .java
files). Submit only the Java source files. Do not submit Java bytecode (class) files. Submit nothing else.

CS 3114 Data Structures & Algorithms Major Project

 7

In order to correct submission errors and late-breaking implementation errors, you will be allowed up to five submissions for
this assignment. You may choose which one will be evaluated at your demo.

The Student Guide and link to the submission client can be found at: http://www.cs.vt.edu/curator/

Evaluation:

The quality of the OO design in your solution will be evaluated; you are expected to identify and implement a sound
collection of classes, whether the specification mentions them or not. The quality of your internal documentation will be
evaluated. Finally, the correctness of your solution will be evaluated by executing your solution on a collection of test data
files. Be sure to test your solution with all of the data sets that will be posted, since we will use a variety of data sets,
including at least one very large data one (perhaps hundreds of thousands of records) in our evaluation.

The quality of your design will determine a substantial portion of your grade for this assignment. Pay attention to the
discussion and solution for the related design assignment, Homework 3, and make changes as needed. It is possible you may
lose points during the project evaluation for poor design choices, even if you have already lost points for the same poor
decisions on Homework 3. On the other hand, if you lose points on Homework 3, but your implementation of this project
indicates that you have corrected those decisions in your final design, we will rebate part of the deductions you received on
Homework 3.

Remember that your implementation will be tested in the specified environment. If you use a different development
platform, it is entirely your responsibility to make sure your implementation works correctly in the lab.

Note that the evaluation of your project will depend substantially on the quality of your code and documentation. See the
Programming Standards page on the course website for specific requirements that should be observed in this course.

Pedagogic points:

The goals of this assignment include, but are not limited to:

 implementation of a hash table generic in Java
 implementation of a bucket PR quadtree generic in Java
 implementation of a buffer pool in Java
 implementation of complementary internal and leaf node types to conserve memory, using an appropriate hierarchy

of types
 design of appropriate index classes to wrap the containers
 design of appropriate data objects to store in each index
 understanding how to navigate a file in Java
 creation of a sensible OO design for the overall system, including the identification of a number of useful classes not

explicitly named in this specification
 implementation of such an OO design into a working system
 incremental testing of the basic components of the system in isolation
 satisfaction when the entire system comes together in good working order

Pledge:

Each of your program submissions must be pledged to conform to the Honor Code requirements for this course. Specifically,
you must include the pledge statement provided on the Submitting Assignments page of the course website.

