
Hash Tables Finale

Data Structures & Algorithms

1

CS@VT ©2000-2009 McQuain

Table Size with Probing
If a probe strategy is used to resolve collisions then empirical evidence indicates that
search performance is likely to degrade significantly if more than 70% of the table slots
are filled.

In particular, if the table has N slots and stores K elements then the average number of
comparisons performed on a search is:

1
1 /K N

  
  

If we take N = 1000 and plot this, we get:

0.0

2.0

4.0

6.0

8.0

10.0

12.0

100 200 300 400 500 600 700 800 900

Elements stored

Av
g

co
m

pa
ris

on
s

load
factor

Hash Tables Finale

Data Structures & Algorithms

2

CS@VT ©2000-2009 McQuain

Re-hashing
If a probe strategy is used to resolve collisions then we may choose to resize the table
itself if it's load factor gets too large.

However, this not only requires copying all the data elements from the old array into the
new one, but also re-hashing all the key values (or at least recomputing the remainder).

Even so, there's little alternative if you adopt a probing strategy to cope with collisions
and your table performance degrades…

Hash Tables Finale

Data Structures & Algorithms

3

CS@VT ©2000-2009 McQuain

Table Size with Chaining
If chaining is used to resolve collisions then the table never really fills up.

It can be shown that the average number of comparisons on a search is:  1 /K N 

QTP: If we use a table of 1000 slots, how does this compare with the earlier example?

QTP: Is that a fair comparison? Why?

Hash Tables Finale

Data Structures & Algorithms

4

CS@VT ©2000-2009 McQuain

Other Considerations
Regardless of how we handle collisions, we would like the number of them to be small.

Clearly the table size has something to do with that.

When does a collision occur?

When we have two different key values such that: 1 2() () mod()H K H K N 

Now that's equivalent to there exists a positive integer q such that: 2 1() ()H K H K qN 

Another way of looking at this is that collisions occur when the hash function produces
values that are congruents mod N, and the number of possible congruents mod N is
strictly determined:

1 1() _ ()H K INT MAX H Kq
N N

 
 

So, the larger N is the fewer possible congruents there are…

Hash Tables Finale

Data Structures & Algorithms

5

CS@VT ©2000-2009 McQuain

Prime Table Size
Should the table size be prime?

If chaining is used, it doesn't seem to matter, because whether we mod by a prime number
has no effect on the likelihood of getting congruent slot numbers. However…

If a probe strategy is used then a prime table size may improve the odds the probe strategy
will eventually examine all table slots can be increased (e.g., if quadratic probing is used).

But… if probing needs to examine a large number of table slots we have already lost the
performance cost that motivated using a hash table in the first place…

Still, there are some hash functions for which a prime table size may improve results…

Hash Tables Finale

Data Structures & Algorithms

6

CS@VT ©2000-2009 McQuain

Prime Table Size
Consider a string hash function that takes character strings, and applies a shift-and-add
approach to compute an integer.

Say we employ an r-bit shift, then for a k-byte string we're computing an integer of the
form:

But if the table size was a power of 2, say 2r, then modding by that would effectively
ignore the contributions of all but the low byte… which would almost certainly not
produce a good scattering of keys throughout the table.

Since it's natural to work with powers of 2 in such algorithms, selecting a prime table size
would eliminate this effect.

1 2 2
1 2 3(2) (2) (2)r k r k r k

kHashValue b b b b         

