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Table Size with Probing
If a probe strategy is used to resolve collisions then empirical evidence indicates that 
search performance is likely to degrade significantly if more than 70% of the table slots 
are filled.

In particular, if the table has N slots and stores K elements then the average number of 
comparisons performed on a search is:

1
1 /K N

  
  

If we take N = 1000 and plot this, we get:
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Re-hashing
If a probe strategy is used to resolve collisions then we may choose to resize the table 
itself if it's load factor gets too large.

However, this not only requires copying all the data elements from the old array into the 
new one, but also re-hashing all the key values (or at least recomputing the remainder).

Even so, there's little alternative if you adopt a probing strategy to cope with collisions 
and your table performance degrades…
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Table Size with Chaining
If chaining is used to resolve collisions then the table never really fills up.

It can be shown that the average number of comparisons on a search is:  1 /K N 

QTP:  If we use a table of 1000 slots, how does this compare with the earlier example?

QTP:  Is that a fair comparison?  Why?
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Other Considerations
Regardless of how we handle collisions, we would like the number of them to be small.

Clearly the table size has something to do with that.

When does a collision occur?

When we have two different key values such that: 1 2( ) ( ) mod( )H K H K N 

Now that's equivalent to there exists a positive integer q such that: 2 1( ) ( )H K H K qN 

Another way of looking at this is that collisions occur when the hash function produces 
values that are congruents mod N, and the number of possible congruents mod N is 
strictly determined:

1 1( ) _ ( )H K INT MAX H Kq
N N

 
 

So, the larger N is the fewer possible congruents there are…
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Prime Table Size
Should the table size be prime?

If chaining is used, it doesn't seem to matter, because whether we mod by a prime number 
has no effect on the likelihood of getting congruent slot numbers.  However…

If a probe strategy is used then a prime table size may improve the odds the probe strategy 
will eventually examine all table slots can be increased (e.g., if quadratic probing is used).

But… if probing needs to examine a large number of table slots we have already lost the 
performance cost that motivated using a hash table in the first place…

Still, there are some hash functions for which a prime table size may improve results…
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Prime Table Size
Consider a string hash function that takes character strings, and applies a shift-and-add 
approach to compute an integer.

Say we employ an r-bit shift, then for a k-byte string we're computing an integer of the 
form:

But if the table size was a power of 2, say 2r, then modding by that would effectively 
ignore the contributions of all but the low byte… which would almost certainly not 
produce a good scattering of keys throughout the table.

Since it's natural to work with powers of 2 in such algorithms, selecting a prime table size 
would eliminate this effect.

1 2 2
1 2 3(2 ) (2 ) (2 )r k r k r k

kHashValue b b b b         


