
External Sorting

Data Structures & Algorithms

1

CS@VT ©2000-2009 McQuain

Sorting a File of Records
Consider the problem of sorting a large file, stored on disk, containing a large number of
logical records.

If the file is very large at all then it will be impossible to load all of the records into
memory at once, and so the conventional in-memory sorting techniques will not work.

Obviously, some subset of the records must be in memory during the sort, and each
record must be loaded into memory at some time.

However, at any given time, most of the records will exist only in secondary storage.

Aside from correctness, the principal goal of external sorting is to minimize the amount
of time spent on disk accesses.

External Sorting

Data Structures & Algorithms

2

CS@VT ©2000-2009 McQuain

Keys vs Records
"Keys are small but records are large."

E.g., consider sorting a file of book records by ISBN. A book record may contain a
dozen or more fields, and occupy several hundred bytes. An ISBN will occupy at most
13 bytes.

Clearly we can store more key values in memory than we can store entire records.

So we could read a portion of the file, and build an in-memory list of key values, which
could then be sorted using one of the techniques already discussed, such as Quicksort.

Of course, we must also store an address (file offset) along with the key value in order to
locate the record.

The sorted list of keys could be used as an index for the unsorted records, or the records
could be read and re-written in sorted order.

Note that it will often be impossible to store all of the keys in memory at once…

External Sorting

Data Structures & Algorithms

3

CS@VT ©2000-2009 McQuain

Simple Mergesort
We could sort a file of records as follows:

1 Partition the file into two files, say F1 and F2.

2 Read in a block from each file.

3 Take the first record from each block and write them in sorted order (to a new file,
say M1).

4 Repeat the process with the record from each block, but write to a second file, say
M2.

5 Repeat until F1 and F2 have been depleted, reading in new blocks as necessary.

M1 and M2 consist of ordered pairs of records.

6 Repeat steps 2-5, but merge pairs of records instead of single records, producing
sorted runs of length four.

7 Continue, building longer and longer runs.

External Sorting

Data Structures & Algorithms

4

CS@VT ©2000-2009 McQuain

Illustration

64193223291736

22537815141320F1

F2

22637923151713

41532829143620M1

M2

41226529231514

37329836201713F1

F2

Assuming one block
holds 4 records, what
would be resident in
memory at each stage?

External Sorting

Data Structures & Algorithms

5

CS@VT ©2000-2009 McQuain

Illustration

413732229865

3629232017151413M1

M2

41226529231514

37329836201713F1

F2

171514139865 4137363229232220

How many times is the
entire file read here?

External Sorting

Data Structures & Algorithms

6

CS@VT ©2000-2009 McQuain

Reducing the Number of Passes
We can improve performance if we reduce the number of passes. The inefficiency lies in
the early stages, as run lengths grow from 1 to 2 to 4 to 8 to …

The problem is: how can we efficiently build long runs to which we may efficiently
apply the merging algorithm?

One solution: read as much of the file as possible into memory at once, then sort that and
write it to a new file. Repeat the process until the entire file has been read. This will
build runs whose length corresponds to the amount of memory we can allot to hold
records.

Surprisingly it's possible to do substantially better than that, producing initial runs that
are roughly twice as long as memory will store at once…

External Sorting

Data Structures & Algorithms

7

CS@VT ©2000-2009 McQuain

Replacement Selection
Allocate a portion of memory for a min-heap, an input buffer and an output buffer:

Input
File

Output
File

Heap

B
uffer B

uf
fe

r

Fill the heap, heapify, and delete the root to the output buffer. If the next key in the input
buffer is larger than the old root, make it the new root, else…

External Sorting

Data Structures & Algorithms

8

CS@VT ©2000-2009 McQuain

Illustration

31

12

19

2125 56 40

16

31

16

19

2125 56 40

29 12

31

19

21

2925 56 40

14 16 12

External Sorting

Data Structures & Algorithms

9

CS@VT ©2000-2009 McQuain

Illustration

31

19

21

2925 56 40

14 16 12

31

21

25

2940 56 14

35 19 16 12

… and so forth … when the heap becomes empty, we just flush the buffer,
heapify the array (which is where?) and begin a new run…

