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1Class Design: Perspectives

specification

Behavioral

Structural

Informational
Emphasizes actions 
in system

Emphasizes 
relationships among 
components

Emphasizes role of 
information/data/state 
and how it’s 
manipulated
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2Example:  Library System

Behavioral (actions):
– Patrons are registered
– Books are checked out

Structural (relationships):
– Catalog is made of books
– Book may be checked out to a patron

Informational (state):
– What’s the status (available, checked out, ???) of a book?
– What books does a patron have checked out?
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3Behavioral Perspective

Consider some action in a program…

What object...
– initiates action?

What objects...
– help perform action?
– are changed by action?
– are interrogated during action?

Consider registering a patron…

Controller (procedural)...
– initiates the action

Circulation Desk…
– performs the action

Patron List…
– is changed by the action

Patron List…
– is interrogated during the action
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4Behavioral Categories

Actor (does something)
Circulation Desk

Reactor (system events, external & user events)
Controller, Parser??

Agent (messenger, server, finder, communicator)
Catalog, PatronList

Transformer (data formatter, data filter)
Parser
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5Structural Perspective

What objects...
– are involved in relationship?
– are necessary to sustain (implement, realize, maintain) relationship?

What objects not in relationship...
– are aware of and exploit relationship?

Consider a relationship:  book is checked out to patron
Circulation Desk…

– is involved in the relationship
Catalog and PatronList…

– are necessary to sustain the relationship
???...

– is aware of and exploits the relationship
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6Structural Categories

Acquaintance (symmetric, asymmetric)
– CirculationDesk knows about PatronList, asymmetric relationship

Containment (collaborator, controller)
– CirculationDesk controls/uses PatronList and Catalog

Collection (peer, iterator, coordinator)
– PatronList contains and manages Patrons
– CirculationDesk contains and manages CheckedOut objects
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7Informational Perspective

What objects...
– represent the data or state?
– read data or interrogate state?
– write data or update state?

Consider a state:  status of book

CheckedOut list and Catalog implicitly…
– represent (stores) the state information

CirculationDesk…
– interrogates the state of a book (via …)

CirculationDesk…
– updates the state of a book
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8Data Versus State

Definition:
Information processed by the 
system 

Example:
checkout command

Data                              State

Definition:
Information used by system to control 
processing 

Example:
BookStatus (Avail, CheckedOut, etc.)
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9Evaluating a Class Design 

Evaluation is needed to accept, revise or reject a class design.

Five aspects to be evaluated:
– Abstraction: useful?
– Responsibilities: reasonable?
– Interface: clean, simple?
– Usage: “right” set of methods?
– Implementation: reasonable?
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10Tests for Adequacy of Abstraction

Identity:
Are class purpose and method purposes well-defined and connected?

Clarity:
Can purpose of class be given in brief, dictionary-style definition?

Uniformity:
Do operations have uniform level of abstraction?



Design & Evaluation

OO Software Design and ConstructionComputer Science Dept Va Tech February 2000 ©2000  McQuain WD

11Good or Bad Abstractions?

class Date: 
Date represents a specific instant in time, with millisecond precision.

class TimeZone:
TimeZone represents a time zone offset, and also figures out daylight savings.
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12Tests for Adequacy of Responsibilities

Clear:
Does class have specific responsibilities?

Limited:
Do responsibilities fit the abstraction (no more/less)?

Coherent:
Do responsibilities make sense as a whole?

Complete:
Does class completely capture abstraction?
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13Tests for Adequacy of Interface

Naming:
Do names clearly express the intended effect?

Symmetry:
Are names and effects of pairs of inverse operations clear?

Flexibility:
Are methods adequately overloaded?

Convenience:
Are default values used when possible?
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14Example of Poor Naming

class ItemList {
private:
// . . .
public:

void Delete(Item item);
// Take Item’s node out of list and delete Item

void Remove(Item item);
// Take Item’s node out of the list but do not 
// delete Item

void Erase(Item item);
// Keep Item’s node in List, but with no information

};
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15Tests for Adequacy of Usage

Examine how objects of the class are used in different contexts (see below…)

Incorporate all operations that may be useful in these contexts… up to a point…

class Location {
private:
int xCoord, yCoord;  //coordinates

public:
Location(int x, int y);
int xCoord(); //return xCoord value
int yCoord(); //return yCoord value

};

// usage:
Location point(100,100);
// shift point:
point = Location( point.xCoord()+5, point.yCoord()+10 );
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16

class Location {
private:
int xCoord, yCoord;  //coordinates

public:
Location(int x, int y);
int XCoord(); //return xCoord value
int YCoord(); //return yCoord value
void ShiftBy(int dx, int dy);  // shift by relative coordinates

};

// Revised usage:
Location point(100,100);

point.ShiftBy(5, 10);   // shift point

Revised Location Class
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17Implementation

Least important, mostly easily changed aspect to be evaluated.
– poorly engineered design leads to problematic implementation
– massaging a problematic implementation (without redesign) rarely produces any 

effective improvement
– it’s only code…

Overly complex implementation may mean:
– class is not well conceived 
– class has been given too much responsibility


