
Design & Evaluation

OO Software Design and ConstructionComputer Science Dept Va Tech February 2000 ©2000 McQuain WD

1Class Design: Perspectives

specification

Behavioral

Structural

Informational
Emphasizes actions
in system

Emphasizes
relationships among
components

Emphasizes role of
information/data/state
and how it’s
manipulated

Design & Evaluation

OO Software Design and ConstructionComputer Science Dept Va Tech February 2000 ©2000 McQuain WD

2Example: Library System

Behavioral (actions):
– Patrons are registered
– Books are checked out

Structural (relationships):
– Catalog is made of books
– Book may be checked out to a patron

Informational (state):
– What’s the status (available, checked out, ???) of a book?
– What books does a patron have checked out?

Design & Evaluation

OO Software Design and ConstructionComputer Science Dept Va Tech February 2000 ©2000 McQuain WD

3Behavioral Perspective

Consider some action in a program…

What object...
– initiates action?

What objects...
– help perform action?
– are changed by action?
– are interrogated during action?

Consider registering a patron…

Controller (procedural)...
– initiates the action

Circulation Desk…
– performs the action

Patron List…
– is changed by the action

Patron List…
– is interrogated during the action

Design & Evaluation

OO Software Design and ConstructionComputer Science Dept Va Tech February 2000 ©2000 McQuain WD

4Behavioral Categories

Actor (does something)
Circulation Desk

Reactor (system events, external & user events)
Controller, Parser??

Agent (messenger, server, finder, communicator)
Catalog, PatronList

Transformer (data formatter, data filter)
Parser

Design & Evaluation

OO Software Design and ConstructionComputer Science Dept Va Tech February 2000 ©2000 McQuain WD

5Structural Perspective

What objects...
– are involved in relationship?
– are necessary to sustain (implement, realize, maintain) relationship?

What objects not in relationship...
– are aware of and exploit relationship?

Consider a relationship: book is checked out to patron
Circulation Desk…

– is involved in the relationship
Catalog and PatronList…

– are necessary to sustain the relationship
???...

– is aware of and exploits the relationship

Design & Evaluation

OO Software Design and ConstructionComputer Science Dept Va Tech February 2000 ©2000 McQuain WD

6Structural Categories

Acquaintance (symmetric, asymmetric)
– CirculationDesk knows about PatronList, asymmetric relationship

Containment (collaborator, controller)
– CirculationDesk controls/uses PatronList and Catalog

Collection (peer, iterator, coordinator)
– PatronList contains and manages Patrons
– CirculationDesk contains and manages CheckedOut objects

Design & Evaluation

OO Software Design and ConstructionComputer Science Dept Va Tech February 2000 ©2000 McQuain WD

7Informational Perspective

What objects...
– represent the data or state?
– read data or interrogate state?
– write data or update state?

Consider a state: status of book

CheckedOut list and Catalog implicitly…
– represent (stores) the state information

CirculationDesk…
– interrogates the state of a book (via …)

CirculationDesk…
– updates the state of a book

Design & Evaluation

OO Software Design and ConstructionComputer Science Dept Va Tech February 2000 ©2000 McQuain WD

8Data Versus State

Definition:
Information processed by the
system

Example:
checkout command

Data State

Definition:
Information used by system to control
processing

Example:
BookStatus (Avail, CheckedOut, etc.)

Design & Evaluation

OO Software Design and ConstructionComputer Science Dept Va Tech February 2000 ©2000 McQuain WD

9Evaluating a Class Design

Evaluation is needed to accept, revise or reject a class design.

Five aspects to be evaluated:
– Abstraction: useful?
– Responsibilities: reasonable?
– Interface: clean, simple?
– Usage: “right” set of methods?
– Implementation: reasonable?

Design & Evaluation

OO Software Design and ConstructionComputer Science Dept Va Tech February 2000 ©2000 McQuain WD

10Tests for Adequacy of Abstraction

Identity:
Are class purpose and method purposes well-defined and connected?

Clarity:
Can purpose of class be given in brief, dictionary-style definition?

Uniformity:
Do operations have uniform level of abstraction?

Design & Evaluation

OO Software Design and ConstructionComputer Science Dept Va Tech February 2000 ©2000 McQuain WD

11Good or Bad Abstractions?

class Date:
Date represents a specific instant in time, with millisecond precision.

class TimeZone:
TimeZone represents a time zone offset, and also figures out daylight savings.

Design & Evaluation

OO Software Design and ConstructionComputer Science Dept Va Tech February 2000 ©2000 McQuain WD

12Tests for Adequacy of Responsibilities

Clear:
Does class have specific responsibilities?

Limited:
Do responsibilities fit the abstraction (no more/less)?

Coherent:
Do responsibilities make sense as a whole?

Complete:
Does class completely capture abstraction?

Design & Evaluation

OO Software Design and ConstructionComputer Science Dept Va Tech February 2000 ©2000 McQuain WD

13Tests for Adequacy of Interface

Naming:
Do names clearly express the intended effect?

Symmetry:
Are names and effects of pairs of inverse operations clear?

Flexibility:
Are methods adequately overloaded?

Convenience:
Are default values used when possible?

Design & Evaluation

OO Software Design and ConstructionComputer Science Dept Va Tech February 2000 ©2000 McQuain WD

14Example of Poor Naming

class ItemList {
private:
// . . .
public:

void Delete(Item item);
// Take Item’s node out of list and delete Item

void Remove(Item item);
// Take Item’s node out of the list but do not
// delete Item

void Erase(Item item);
// Keep Item’s node in List, but with no information

};

Design & Evaluation

OO Software Design and ConstructionComputer Science Dept Va Tech February 2000 ©2000 McQuain WD

15Tests for Adequacy of Usage

Examine how objects of the class are used in different contexts (see below…)

Incorporate all operations that may be useful in these contexts… up to a point…

class Location {
private:
int xCoord, yCoord; //coordinates

public:
Location(int x, int y);
int xCoord(); //return xCoord value
int yCoord(); //return yCoord value

};

// usage:
Location point(100,100);
// shift point:
point = Location(point.xCoord()+5, point.yCoord()+10);

Design & Evaluation

OO Software Design and ConstructionComputer Science Dept Va Tech February 2000 ©2000 McQuain WD

16

class Location {
private:
int xCoord, yCoord; //coordinates

public:
Location(int x, int y);
int XCoord(); //return xCoord value
int YCoord(); //return yCoord value
void ShiftBy(int dx, int dy); // shift by relative coordinates

};

// Revised usage:
Location point(100,100);

point.ShiftBy(5, 10); // shift point

Revised Location Class

Design & Evaluation

OO Software Design and ConstructionComputer Science Dept Va Tech February 2000 ©2000 McQuain WD

17Implementation

Least important, mostly easily changed aspect to be evaluated.
– poorly engineered design leads to problematic implementation
– massaging a problematic implementation (without redesign) rarely produces any

effective improvement
– it’s only code…

Overly complex implementation may mean:
– class is not well conceived
– class has been given too much responsibility

