
Composition

OO Software Design and ConstructionComputer Science Dept Va Tech January 2000 ©2000 McQuain WD

1Composition of Classes

Composition: an organized collection of components interacting to achieve a
coherent, common behavior.

Why compose classes?

Permits a “lego block” approach to design and implementation:
Each object captures one reusable concept.
Composition conveys design intent clearly.

Improves readability of code.

Promotes reuse of existing implementation components.

Simplifies propagation of change throughout a design or an implementation.

Composition

OO Software Design and ConstructionComputer Science Dept Va Tech January 2000 ©2000 McQuain WD

2Composition by Association

Association (acquaintance)

Example: a database object may be associated with a file stream object.
The database object is “acquainted” with the file stream and may use its public
interface to accomplish certain tasks.

Acquaintance may be one-way or two-way.

Association is managed by having a “handle” on the other object.

Associated objects have independent existence (as opposed to one being a sub-part
of the other).

Association is generally established dynamically (at run-time), although the design
of one of the classes must make a provision for creating and maintaining the
association.

Sometimes referred to as the “knows-a” relationship.

Composition

OO Software Design and ConstructionComputer Science Dept Va Tech January 2000 ©2000 McQuain WD

3A Simple Association
class DisplayableNumber {
private:

int Count;
ostream* Out;

public:
DisplayableNumber(int InitCount = 0, ostream& Where = cout);
void ShowIn(ostream& setOut);
void Show() const;
void Reset(int newValue);
int Value() const;

};

void DisplayableNumber::ShowIn(ostream& setOut) {
Out = &setOut;

}

void DisplayableNumber::Show() const {
*Out << Count << endl;

}

Composition

OO Software Design and ConstructionComputer Science Dept Va Tech January 2000 ©2000 McQuain WD

4Composition by Aggregation

Aggregation (containment)

Example: a LinkList object contains a Head pointer to the first element of a linked
list of Node objects, which are only created and used within the context of a
LinkList object.

The objects do not have independent existence; one object is a component or sub-
part of the other object.

Aggregation is generally established within the class definition. However, the
connection may be established by pointers whose values are not determined until
run-time.

Sometimes referred to as the “has-a” relationship.

Composition

OO Software Design and ConstructionComputer Science Dept Va Tech January 2000 ©2000 McQuain WD

5A Simple Aggregation
class Array { // static-sized array encapsulation
private:

int Capacity; // maximum number of elements list can hold
int Usage; // number of elements list currently holds
Item* List; // the list

void ShiftTailUp(int Start);
void ShiftTailDown(int Start);
void Swap(Item& First, Item& Second);

public:
Array(); // empty list of size zero
Array(int initCapacity); // empty list of size initCapacity
Array(int initCapacity, Item Value); // list of size initCapacity,

// each cell stores Value
Array(const Array& oldArray); // copy constructor

int getCapacity() const; // retrieve Capacity
int getUsage() const; // Usage
bool isFull() const; // ask if List is full
bool isEmpty() const; // or empty

// . . . continues . . .

Composition

OO Software Design and ConstructionComputer Science Dept Va Tech January 2000 ©2000 McQuain WD

6A Simple Aggregation
// . . . continued

bool InsertAtTail(Item newValue); // insert newValue at tail of list
bool InsertAtIndex(Item newValue, int Idx);// insert newValue at specified

// position in List

bool DeleteAtIndex(int Idx); // delete element at given index
bool DeleteValue(Item Value); // delete all copies of Value in list

Item Retrieve(int Idx) const; // retrieve value at given index
int FindValue(Item Value) const; // find index of first occurrence of

// given value

void Clear(); // clear list to be empty, size zero
void Reverse(); // reverse order of list elements

~Array(); // destroy list (deallocate memory)
};

