Composition of Classes Composition 1

Composition: an organized collection of components interacting to achieve a
coherent, common behavior.

Why compose classes?

Permits a “lego block™ approach to design and implementation:
Each object captures one reusable concept.
Composition conveys design intent clearly.

Improves readability of code.

Promotes reuse of existing implementation components.

Simplifies propagation of change throughout a design or an implementation.

OO Software Design and Construction

Composition by Association Composition 2

Association (acquaintance)

Example: a database object may be associated with a file stream object.

The database object is “acquainted” with the file stream and may use its public
interface to accomplish certain tasks.

Acquaintance may be one-way or two-way.
Association is managed by having a “handle” on the other object.

Associated objects have independent existence (as opposed to one being a sub-part
of the other).

Association is generally established dynamically (at run-time), although the design
of one of the classes must make a provision for creating and maintaining the
association.

Sometimes referred to as the “knows-a” relationship.

OO Software Design and Construction

A Simple Association Composition 3

class DisplayableNumber {

private:
int Count;
ostream* Out;
public:

DisplayableNumber(int InitCount = 0, ostream& Where = cout);
void Showln(ostream& setOut);

void Show() const;

void Reset(int newValue);

int Value() const;

};

void DisplayableNumber: :Showln(ostream& setOut) {
Out = &setOut;

}

void DisplayableNumber::Show() const {
*0Out << Count << endl;

}

OO Software Design and Construction

Composition by Aggregation Composition

Aggregation (containment)

Example: a LinkList object contains a Head pointer to the first element of a linked
list of Node objects, which are only created and used within the context of a
LinkL.ist object.

The objects do not have independent existence; one object is a component or sub-
part of the other object.

Aggregation is generally established within the class definition. However, the
connection may be established by pointers whose values are not determined until
run-time.

Sometimes referred to as the “has-a” relationship.

OO Software Design and Construction

A Simple Aggregation Composition

int
int

class Array {
private:

Capacity;
Usage;

ltem* List;

// static-sized array encapsulation

// maximum number of elements list can hold
// number of elements list currently holds
// the list

void ShiftTailUp(int Start);
void ShiftTailDown(int Start);
void Swap(ltem& First, ltem& Second);

public:

Array(Q);

Array(int initCapacity);

// empty list of size zero
// empty list of size initCapacity

Array(int initCapacity, ltem Value); // list of size iInitCapacity,

Array(const Array& oldArray);

int
int
bool
bool

// .

getCapacity() const;

// each cell stores Value
// copy constructor

// retrieve Capacity

getUsage() const; // Usage
isFull() const; // ask i1f List i1s full
i1IsEmpty() const; // or empty
. continues . .

OO Software Design and Construction

A Simple Aggregation

Composition

6

// .

. continued
bool InsertAtTail(ltem newValue);
bool InsertAtlndex(ltem newValue, iInt
bool DeleteAtIndex(int 1dx); //
bool DeleteValue(ltem Value); //
Item Retrieve(int 1dx) const; //
int Findvalue(ltem Value) const; //
//
void Clear(); //
void Reverse(); //
~Array(); //

// insert newValue at tail of list
1dx);// insert newValue at specified
// position In List

delete element at given index
delete all copies of Value iIn list

retrieve value at given index
find 1index of first occurrence of

given value

clear list to be empty, size zero
reverse order of list elements

destroy list (deallocate memory)

OO Software Design and Construction

