
CS 2604 Data Structures Midterm Summer II 2005

 1

V
IR

G
IN

IA

PO
LYTECHNIC

INSTITU
TE

A
N

D

STATE UNIVERSI T
Y

UT PROSI M

Instructions:

• Print your name in the space provided below.
• This examination is closed book and closed notes, aside from the permitted one-page formula sheet. No

calculators or other computing devices may be used.
• Answer each question in the space provided. If you need to continue an answer onto the back of a page, clearly

indicate that and label the continuation with the question number.
• If you want partial credit, justify your answers, even when justification is not explicitly required.
• There are 10 questions, priced as marked. The maximum score is 100.
• When you have completed the test, sign the pledge at the bottom of this page and turn in the test.
• Note that either failing to return this test, or discussing its content with a student who has not taken it is a

violation of the Honor Code.

Do not start the test until instructed to do so!

Name Solution
 printed

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 signed

CS 2604 Data Structures Midterm Summer II 2005

 2

1. [9 points] Determine whether each of the following statements is true or false. No justification is required.

a) TRUE)Θ(nnn 22 is 10001507 ++

b) TRUE)Ω(nn 150 is 10001507 2 ++

c) FALSE n)Ο(n nn log is 10001507 2 ++

2. [8 points] Use the theorem about limits from the notes to either prove the statement below is true, or that it is false. (Be

sure to state your conclusion.)

 ()32 is log3)(nΩnnnnf +=

0
2ln

3
2

2ln/3lim

2ln
3

2
log3lim

2
2ln

13log3
limlog31limlog3lim 23

2

=





 +=







 +=

+
=

+
=

+

∞→

∞→∞→∞→∞→

n
n

nn
n

n
n

nn

n
nn

n
nnn

n

nnnn

This implies than f(n) is Ο(n^3), not Ω(n^3).

3. [10 points] A programmer must choose a data structure to store N records, which will be supplied to the program in

random order, and to support random searches on those records. Suppose the programmer decides to use a skip list. As
each element is received, it will be inserted into the skip list.

a) What is the expected Θ-complexity for putting all N elements into the list (assuming a "good" skip list)? Explain.

Insertion of the k-th element requires a search of the skiplist, which should average Θ(log (k-1)) if the skip list is
"good". So, inserting all N of them should cost about:

)!log()1log(
2

Nk
N

≈−∑

which is actually Θ(N log N).

b) If N = 210, estimate the cost of performing 220 searches on the data in the skip list? Your answer should be a number,

perhaps expressed using powers of 2.

Again, if the skip list is "good", each search should cost about log (2^10), or 10. So, all of the searches should cost
about 10*2^20.

CS 2604 Data Structures Midterm Summer II 2005

 3

4. [12 points] Assuming that each assignment, arithmetic operation, comparison, and array index costs one unit of time,
analyze the complexity of the body of the following function that computes an approximation of the Euler number e, and
give a simplified exact count complexity function T(N) and state its big-Θ category:

double Euler(int N) {

 double Approx, Denom; // no cost
 Approx = 1.0; // 1
 Denom = 1.0; // 1
 int Iter = 1; // 1

 while (Iter < N) { // 1 each pass, 1 more to exit

 Approx = Approx + 1.0 / Denom; // 3 each pass
 ++Iter; // 1 each pass
 Denom = Denom * Iter; // 2 each pass
 }
 return Approx; // 1
}

The complexity function would be:

() 27273)(
1

1

−=++= ∑
−

=

NNT
N

Iter

This is obviously Θ(N).

A quibble: The derivation above assumes that N is at least 1. T(0) would actually be 5.

CS 2604 Data Structures Midterm Summer II 2005

 4

5. [10 points] Referring to the binary tree shown below, write down the values in the order they would be visited if an
enumeration was done using:

a) a preorder traversal

b) a postorder traversal

50 25 10 40 75 60 70 90 80 95 10 40 25 70 60 80 95 90 75 50

For each of the questions 5 and 6, start with the following BST:

6. [8 points] Draw the resulting BST if 23 is inserted.

7. [8 points] Draw the resulting BST if 50 is deleted.

10 40 60

50

25 75

90

70 80 95

10 40 60

50

25 75

90

70 80 95 23

10 40 70

60

25 75

90

80 95

CS 2604 Data Structures Midterm Summer II 2005

 5

For question 8, assume the following template declarations for an implementation of a doubly-linked list:

// DNodeT.h
//
. . .
template <typename T> class DNodeT {
public:
 T Element;
 DNodeT<T>* Prev;
 DNodeT<T>* Next;
 // irrelevant members not shown
};
. . .

// DListT.h
//
. . .
template <typename T> class DListT {
private:
 DNodeT<T>* Head, Tail; // pointers to first and last data nodes, if any
 DNodeT<T>* Fore, Aft; // pointers to leading and trailing sentinels
public:
 // irrelevant members not shown
 iterator begin(); // return iterator to first data node (or end())
 iterator end(); // one-past-end
 const_iterator begin() const; // return const_iterator objects similarly
 const_iterator end() const;
 ~DListT(); // destroy all dynamic content of the list
};
. . .

8. [10 points] Write an implementation of the assignment operator for the DListT template. You may not call any other

member functions of the template, other than iterator-related ones if you wish, in your solution.

 template <typename T> DListT<T>& DListT<T>::operator=(const DListT<T>& Source) {

 if (this == &Source) return (*this); // if self-copying, do nothing
 while (Head != Aft) { // delete current contents
 Fore->Next = Head->Next;
 delete Head;
 Head = Fore->Next;
 }
 Head = Tail = NULL; // restore to empty config
 Aft->Prev = Fore;
 DNodeT<T>* Curr = Source.Head;
 while (Curr != Source.Aft) {
 Aft->Prev = new DNodeT<T>(Curr->Element, Aft->Prev, Aft);
 if (Fore->Next == Aft)
 Fore->Next = Aft->Prev;
 Curr = Curr->Next;
 }
 Head = Fore->Next;
 Tail = Aft->Prev;
 return (*this);
}

CS 2604 Data Structures Midterm Summer II 2005

 6

9. [10 points] Write an implementation of the following client function that reverses the order of the elements in a DListT
object. You may call any public member functions of the template, but you should concentrate on producing an efficient
solution. Be careful not to make any assumptions about the contents of the list; in particular, there is no guarantee the list
will be non-empty, or that it will not contain duplicate values.

 // Reverse() efficiently reverses the order of the elements in L.
 //
 template <typename T> void Reverse(DListT<T>& L) {

 if (L.isEmpty()) return; // nothing to do if L is empty

 DListT<T>::iterator Front = L.begin();
 DListT<T>::iterator Back = --L.end();

 while (Front != Back) { // done if iterators meet
 T Temp = *Front;
 *Front = *Back;
 *Back = Temp;

 Front++;
 if (Front == Back) return; // done if iterators were adjacent
 Back--;
 }
}

CS 2604 Data Structures Midterm Summer II 2005

 7

For question 10, assume the following template declarations for an implementation of a binary tree:

template <typename T> class BinNodeT {
public:
 T Element;
 BinNodeT<T>* Left;
 BinNodeT<T>* Right;
 // irrelevant members not shown
};

template <typename T> class BST {
protected:
 BinNodeT<T>* Root;
 // irrelevant members not shown

public:
 // irrelevant members not shown
};

10. [15 points] Write an implementation for the new BST member function described below. Your implementation should not

need to call any other template member functions, except for any helper member functions you may wish to write.

 // Less() uses a (modified) inorder traversal pattern, and prints all the
 // values it finds that are strictly less than the parameter Max to cout.
 // The function should not visit any tree nodes unnecessarily.
 //
 template <typename T> void BST<T>::Less(const T& Max) const {

 LessHelper(Max, Root);
}

template <typename T>
void BST<T>::LessHelper(const T& Max, BinNodeT<T>* sRoot) const {

 if (sRoot == NULL) return;

 LessHelper(Max, sRoot->Left); // must always check left subtree

 if (sRoot->Element < Max) {
 cout << sRoot->Element << endl;
 LessHelper(Max, sRoot->Right); // ONLY check left subtree in this case
 }
}

CS 2604 Data Structures Midterm Summer II 2005

 8

