
CS 2604 Data Structures Midterm Summer I 2002 

 Page 1 of 7 

V
IR

G
IN

IA

PO
LYTECHNIC

INSTITU
TE

A
N

D

STATE UNIVERSI T
Y

UT PROSI M

 
Instructions:   
 

• Print your name in the space provided below.  
• This examination is closed book and closed notes.  No calculators or other computing devices may be used. 
• Answer each question in the space provided.  If you need to continue an answer onto the back of a page, clearly 

indicate that and label the continuation with the question number. 
• If you want partial credit, justify your answers, even when justification is not explicitly required. 
• There are 9 questions, priced as marked.  The maximum score is 100. 
• When you have completed the test, sign the pledge at the bottom of this page and turn in the test.   
• Note that either failing to return this test, or discussing its content with a student who has not taken it is a 

violation of the Honor Code. 
 
 

Do not start the test until instructed to do so! 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Name    Solution       
 printed 
 
 
 

Pledge:  On my honor, I have neither given nor received unauthorized aid on this examination. 
 
 
 
            
 signed 



CS 2604 Data Structures Midterm Summer I 2002 

 Page 2 of 7 

1. [10 points]  Circle TRUE or FALSE according to whether the statement is true or false: 
 

a) 1000 – 7n + 2n2 is Θ(n) TRUE FALSE 
 
b) 1000 – 7n + 2n2 is Ω( n )  TRUE FALSE 
 
c) 1000 – 7n + 2n2 is O(n3)  TRUE FALSE 
 
d) 17n log n + n2 is Θ(n2)  TRUE FALSE 
 
        n           i 
e) Σ ( 7 + Σ k )  is Θ(n3)  TRUE FALSE 

i=1       k=1 
  
 
2. [15 points]  The following algorithm prints an integer as a function of an input integer n, assumed to be positive. 

  
read n;              // line 1:  1 

x = 7 * n;           //      2:  2 

y = x + 5 * n;       //      3:  3 

while (x + y > 0) {  //      4:  2 

    x = x – 3;       //      5:  2 

    y = y + 1;       //      6:  2 

} 

print x * y;         //      7:  2 

 
We charge for operations at a rate of one arbitrary time unit for each assignment, arithmetic operation, comparison, integer 
input, and integer output.  Assume that n is a positive integer.   
 
a) Indicate the time cost of each of the numbered lines in the code fragment above. 
 
b) Compute the total time complexity function T(n) for the above algorithm.   
 

T(n) = 1 + 2 + 3 + [Sum(2 + 2 + 2) from 1 to 19n/2] + 2 + 2 = 10 + 57n 
 
 
 
 
 
c) Determine the asymptotic (big-Θ) of T(n) as a simple function of n. 

 
 

The function above is clearly Theta(n). 
 



CS 2604 Data Structures Midterm Summer I 2002 

 Page 3 of 7 

3. [10 points]  A programmer must provide a data structure to store N elements, which will be supplied to the program in 
random order.  Give a big-Θ bound for the number of operations required to create the structure if the programmer uses: 

 
a) a sorted array of dimension N, inserting the N elements at the appropriate index as they are supplied. 
 

Inserting the k-th element will, on average, require searching a list of k-1 elements, taking 
log(k-1) operations, and then shifting half of the elements already in the array.  So the cost of 
inserting elements 1 through N is dominated by the shifting and would be about: 
 

)(
4
1

2
1)( 22

1

NNkNT
N

k

Θ∈≈
−

= ∑
=

 

 
b) an AVL tree, inserting the N elements as they are supplied. 

 
Inserting the k-th element will, on average, have a search cost of log(k-1) and then a constant 
cost for creating and inserting the new node and rebalancing if necessary.  So the total cost 
would be about: 

)log()log()log()(
1

NNNNkNT
N

k

Θ∈≈= ∑
=

 

 
  
4. [12 points]  Consider the AVL tree structure. 
 

a) What property, relating to the tree's balance, does an AVL tree guarantee at each internal node? 
 

The heights of the left and right subtrees of the node differ by no more than 1. 
 
 
 
b) When a value is inserted or deleted in an AVL tree, it may be necessary to rearrange part of the tree to restore the 

AVL balance property.  The rearrangement is accomplished by performing one or more rotations.  In big-Θ terms, 
how many operations are required to perform a single rotation? 

 
Each rotation requires resetting a small number of pointers, an a small number of balance 
factors.  This is bounded by a small constant, and so it is Theta(1). 

 
 
 
 
 
c) Theoretically, if a binary tree has N nodes, what is the minimum number of levels that the tree could have? 

 
Either from a theorem in the notes, or from examples, it is quickly obvious that if a binary 
tree contains N nodes then the number of levels must be at least 1 + log N. 
 



CS 2604 Data Structures Midterm Summer I 2002 

 Page 4 of 7 

5. [16 points]  Consider the heap structure. 
  
a) Is a heap containing N nodes guaranteed to have the minimum possible height?  If so, why?  If not, draw a max-heap 

that does not have minimum height. 
 

Yes.  In a complete tree, all the levels except (possibly) the bottom one are full.  Since that 
leaves no "gaps" in the upper levels to which leaves could be moved, it would be impossible 
to make the tree shorter by moving nodes up. 

 
 
b) What property of a heap makes it possible to easily store it in an array? 
 

Again, the fact that it is complete.  That means that when the left and right children are 
stored using the given index formulas, there will not be any "gaps" in the array due to 
unused cells corresponding to missing child nodes.  The presence of such "gaps" would 
require that some sort of marker field also be stored to keep track of whether each cell was 
actually used. 

 
 
c) Show the array representation of the max-heap shown below: 

 
 
 
 
 
 
 
 
 
 
 

0 1 2 3 4 5
47 43 17 3 40 13

 
 
d) Draw (as a tree, not an array) the resulting tree if the root of the max-heap shown above is deleted: 

 
 
 

47 

43 17

3 40 13 

13 

43 17

3 40 

43

40 17 

3 13



CS 2604 Data Structures Midterm Summer I 2002 

 Page 5 of 7 

6. The relation on the set {0, 1, 2, 3, 4, 5, 6, 7} defined by "x ~ y if and only if x % 3 = y % 3" is an equivalence relation 
with three equivalence classes: 

 
    [0] = {0, 3, 6}  [1] = {1, 4, 7}  [2] = {2, 5} 
 

a) [5 points]  Show how this equivalence relation should be represented, using the notion of a general tree structure.  
 

As discussed in class, the operations needed for an equivalence relation can all be supported 
via nodes storing only a data value and a parent pointer.  So, the situation above could be 
represented as: 

 
 
 
 
 
 
 
 
 
 
b) [4 points]  Write a possible template interface for the tree node that would be used. 

 
template <typename T> class pNode { 
public: 
   T         Data; 
   pNode<T>* Parent; 
   pNode(); 
   pNode(const T& D, pNode<T>* Par); 
}; 

 
 
 
  
7. [6 points]  Using the relationship between big-Θ and limits, prove that T(N) = 7N + N log N is Θ( N log N ). 
 

From a theorem in the notes, if the limit of f(N)/g(N) is a positive constant, then f(N) is 
Theta(g(N)).  So: 

11
log

7lim
log

log7lim =







+=

+
∞→∞→ NNN

NNN
NN

0 

3 6 

2 

5 

1

4 7



CS 2604 Data Structures Midterm Summer I 2002 

 Page 6 of 7 

8. [10 points] Consider the LinkedList and NodeT template interfaces given below: 
  
template <class Data> class NodeT { 
public: 
   Data         Element; 
   NodeT<Data>* Next; 
 
   NodeT(Data Elem = Data(),  
         NodeT<Data>* N = NULL); 
}; 

template <class Data> class LinkedList { 
private: 
   NodeT<Data>* Head; 
   NodeT<Data>* Tail; 
public:  
   bool  Prefix(const Data&); 
   bool  Append(const Data&); 
   bool  Delete(const Data&); 
   LinkedList SubList(const Data&); 
   Data  Find(const Data&); 
   ~LinkedList(); 
}; 

 
Write the body of the public function Delete(), which searches the list for a node containing the specified data element and 
deletes that node, returning the data element, or a default Data object if there is no such node.  Your implementation must 
conform to the template interfaces given above.  You may assume that the implementation of Data provides overloads for any 
relational operators you need. 
 
template <class Data> Data LinkedList<Data>::Delete(const Data& Target) 
{ 
 
   if ( Head == NULL ) return Data();   // handle empty list 
 
   NodeT<Data>* Curr = Head; 
   if ( Target == Curr->Element ) {     // head node holds target 
      Head = Head->Next; 
      if ( Head == NULL ) 
         Tail = NULL; 
      Data Temp = Curr->Element; 
      delete Curr; 
      return Temp; 
   } 
 
   while ( Curr->Next != NULL && Target != Curr->Next->Element ) 
      Curr = Curr->Next; 
 
   if ( Curr->Next == NULL ) return Data();  // target not found 
 
   Data Temp = Curr->Next->Element;     // removing node, not head 
   NodeT<Data>* toKill = Curr->Next; 
   Curr->Next = Curr->Next->Next; 
   if ( Curr->Next = Tail ) 
      Tail = Curr; 
   delete toKill; 
   return Temp; 
} 
 
 
 



CS 2604 Data Structures Midterm Summer I 2002 

 Page 7 of 7 

9. [12 points] Consider the partial BST and binary node template interfaces given below: 
  
template <typename T> class BinNodeT { 
public: 
   Data         Element; 
   BinNodeT<T>* Left; 
   BinNodeT<T>* Right; 
 
   BinNodeT(); 
   BinNodeT(const T& newData, 
            BinNodeT<T>* newLeft, 
            BinNodeT<T>* newRight); 
   ~BinNodeT(); 
}; 
 

template <typename T> class BST { 
protected: 
   BinNodeT<T> *Root; 
   . . . 
 
public: 
   BST(); 
   T* Insert(const T& Elem); 
   T* Find(const T& D, int& Level); 
   T  Delete(const T& D); 
   ~BST(); 
   . . . 
}; 

 
Write a BST member function subTree() which conforms to the interface below.  It is OK to use a recursive helper function 
as long as you show the implementation of that as well. 
 
// If the value Target occurs in the tree, the function copies the subtree whose 
// root stores Target and returns the copy.  If the value does not occur in the 
// tree, the function returns an empty BST.  The implementation may assume that 
// the value Target does not occur more than once. 
// 
template <typename T> BST<T> BST<T>::subTree(const T& Target) { 
 
   BST<T> subTree; 
   if ( Root == NULL ) return subTree;  // handle empty tree 
 
   BinNodeT<T>* Curr = Root; 
   while ( Curr != NULL && Target != Curr->Element ) { 
      if ( Target < Curr->Element ) 
         Curr = Curr->Left; 
      Else 
         Curr = Curr->Right; 
   } 
 
   if ( Curr == NULL ) return subTree;   // target not found 
 
   copyHelper(subTree.Root, Curr); 
   return subTree; 
} 
 
template <typename T> void copyHelper(BinNodeT<T>*& copyRoot,  
                                      const BinNodeT<T>* const sRoot) { 
 
   if ( sRoot == NULL ) return; 
   copyRoot = new BinNodeT<T>(sRoot->Element); 
   copyHelper(copyRoot->Left, sRoot->Left); 
   copyHelper(copyRoot->Right, sRoot->Right); 
} 
 


