
CS 2606 Data Structures and OO Devel II Test 1

 1

READ THIS NOW!

• Print your name in the space provided below.

• There are 6 short-answer questions, priced as marked. The maximum score is 100.

• Aside from the allowed one-page fact sheet, this is a closed-book, closed-notes examination.

• No laptops, calculators, cell phones or other electronic devices may be used during this examination.

• You may not discuss this examination with any student who has not taken it.

• Failure to adhere to any of these restrictions is an Honor Code violation.

• When you have finished, sign the pledge at the bottom of this page and turn in the test and your fact sheet.

Name (Last, First) Solution

 printed

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 signed

CS 2606 Data Structures and OO Devel II Midterm

 2

1. Consider the following algorithm:

for (i = 1; i <= N; i++) { // 1 before, 2 each pass, 1 to exit

 for (j = i; j <= N; j++) { // 1 before, 2 each pass, 1 to exit

 if (i * j <= N) { // 2 each pass
 less = less + 5; // 2 if done
 }

 else {

 less = less – 1; // 2 if done
 }

 }

}

a) [14 points] Using the rules given in class for counting operations, find a simplified function T(N) that counts the

exact number of operations the algorithm would perform.

From the line-by-line analysis above, the complexity function would be:

()

()

()

1 1

1

1

1 1 1

1

1

2

2

() 1 2 1 2 2 2 1 1

6 4 2

6 6 4 2

6 6(1) 4 2

6 6 10 2

(1)
6 6 10 2

2

3 7 2

N N

i j

N N

i j i

N N i

i j j

N

i

N

i

T N

N i

N i

N N
N N

N N

= =

= =

−

= = =

=

=

 
= + + + + + + + 

 

 
= + + 

 

 
= − + + 

 

= − − + +

= − + +

+
= − + +

= + +

∑ ∑

∑ ∑

∑ ∑ ∑

∑

∑

b) [6 points] To what big-Θ complexity class does your answer to the previous part belong? (No proof is necessary.)

Obviously, it is
2()NΘ .

CS 2606 Data Structures and OO Devel II Midterm

 3

2. [16 points] Consider the following two functions:

2 3() log and ()f n n n g n n= =

Determine the complexity relationship between the two functions. That is, determine whether f is strictly ()gΩ , or

f is strictly ()gΟ , or f is ()gΘ . Whichever conclusion you reach, state it clearly and justify your conclusion

completely by applying relevant theorems from the course notes.

Since the first function is not listed in Theorem 5, we must apply Theorem 8 and its Corollary:

2

3

() log
limit limit

()

log
limit

1

ln 2limit
1

0

n n

n

n

f n n n

g n n

n

n

n

→∞ →∞

→∞

→∞

=

=

=

=

By the Corollary to Theorem 8,
2 logn n is strictly 3()nΟ .

CS 2606 Data Structures and OO Devel II Midterm

 4

3. [16 points] When designing a container implementation in C++, why is it generally desirable to provide two versions of

the search logic, as in the specified BST template interface:

 T* const Find(const T& D);

 const T* const Find(const T& D) const;

 Explain carefully why both are needed; it would be useful to provide hypothetical examples of client code to support

your explanation.

The second form is necessary so that the client can call Find() in a context in which the container object has been

declared as a const object. For example, the client may have created a container object in one function and then

passed it to another function by constant reference:

void Foo(const BST<int>& Tree, . . .) {
 . . .
 . . . = Tree.Find(. . .);
 . . .
}

Since Tree is const, the function Foo() can only call member functions of Tree that are declared with the

const qualifier, and the call shown above would not be allowed unless there were a const version of Find().

On the other hand, the call shown above would only be allowed if the pointer returned by Find() is assigned to a

suitably const pointer:

 const int* const p = Tree.Find(. . .);

And, in this case, the client cannot use p to make any modifications to the target of p (which may actually be a good

thing in most situations). But clearly in some cases, the client will want to call Find() to locate a data object and

then modify that data object in situ. Therefore, we also need the first form of Find() to allows things like:

void DeleteEntry(unsigned int Offset, Location L) {
 . . .
 LocIdxEntry *p = QTree.Find(. . .);
 p->DeleteOffset(Offset);
 . . .
}

CS 2606 Data Structures and OO Devel II Midterm

 5

4. Consider the AVL tree at right:

a) [8 points] Draw the resulting AVL tree if the value 90 is inserted.

b) [8 points] Draw the resulting AVL tree if the value 70 is inserted (into the original tree).

50

25 75

60 80

50

25 75

60 80

70

75

50 80

60 90 25

50

25 75

60 80

90

50

25 60

75

70 80

60

50 75

70 80 25

CS 2606 Data Structures and OO Devel II Midterm

 6

5. The PR-quadtree partitions a finite, square region into four identical sub-regions (quadrants). An alternate type of

quadtree, let's call it an R-quadtree, allows unequal partitioning of sub-regions based on the actual locations of data

objects, as shown below.

a) [8 points] Given the same set of data points, is it possible that insertion into the

 PR-quadtree would require splitting but insertion into the R-quadtree would not?

 If yes, give an example to illustrate how this could happen. (A clear diagram would

 be sufficient.) If not, explain why not.

It should be obvious that either type of tree will store a single data point without

any splitting, and that both will require at least one split when a second data point

is inserted.

However, after that, things may be different; suppose that A and B are inserted first:

The PR-quadtree (on the right) required two splittings, while the R-quadtree (on the left) required only one.

But that's not exactly what the question was asking (both DID require a split when B was inserted). However

when C is inserted the PR-quadtree must split again, but the R-quadtree already separates the values.

b) [8 points] Given the same set of data points, is it possible that insertion into the PR-quadtree would require

splitting but insertion into the R-quadtree would not? If yes, give an example to illustrate how this could happen.

(A clear diagram would be sufficient.) If not, explain why not.

Take the same starting point as above, but place the third point C in a different spot:

Now, the PR-quadtree does not require performing another split, but the R-quadtree does.

A

B

A

B

C
C

A

B

A

B

C C

CS 2606 Data Structures and OO Devel II Midterm

 7

6. [16 points] Recall the definition:

Let f and g be non-negative functions of n . Then f is ()gΟ if and only if there exist constants

0N > and 0C > such that, for all n N> , () ()f n Cg n≤ .

Prove the following fact: if f , g and h are non-negative functions of n, and f is ()gΟ and g is ()hΟ then f is ()hΟ .

Note: you may NOT use the theorem that states that big-O is transitive.

proof: Suppose that f , g and h are non-negative functions of n, and f is ()gΟ and g is ()hΟ .

Then from the definition, there exist constants 0N > and 0C > such that, for all n N> , () ()f n Cg n≤ .

And, there also exist constants 0M > and 0D > such that, for all n M> , () ()f n Dg n≤ .

(Note: there is no reason to suppose that the same constants will apply for both relationships.)

Let max(,)R N M= and let E CD= . Then we have that, for all n R> :

() () since

() since

() since

f n Cg n n R n N

CDh n n R n M

Eh n E CD

≤ > ⇒ >

≤ > ⇒ >

= =

Therefore, by definition, we have that f is ()hΟ .

 QED

