You will submit your solution to this assignment to the Curator System (as HW2). Your solution must be either a plain text file (e.g., NotePad) or a MS Word document; submissions in other formats will not be graded.

Except as noted, credit will only be given if you show relevant work.

1. [20 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of the body of the following function. (Take list. length to be N.)
```
int part(int[] list, int barrierIdx) {
    int barrier, maxIdx, temp;
    barrier = list[barrierIdx]; // 1
    maxIdx = list.length - 1; // 2
    temp = list[barrierIdx]; // 3
    list[barrierIdx] = list[maxIdx]; // 4
    list[maxIdx] = temp; // 5
    barrierIdx = 0; // 6
    for (int i = 0; i < maxIdx; i++) { // 7
        if ( list[i] < barrier ) { // 8
            temp = list[barrierIdx]; // 9
            list[barrierIdx] = list[i]; //10
            list[i] = temp; //11
            barrierIdx++; //12
        }
    }
    temp = list[maxIdx]; //13
    list[maxIdx] = list[barrierIdx]; //14
    list[barrierIdx] = temp; //15
    return barrierIdx; //16
}
```

2. [40 points] For each part, determine the simplest possible function $g(n)$ such that the given function is $\Theta(g)$. No justification is necessary.
a) $a(n)=3+14 n+47 n^{2}$
b) $b(n)=14 n^{2}+3 n \log n$

Hint: the last three take a little analysis.
c) $c(n)=n^{0.9}+\log n$
d) $d(n)=3 n^{2} \log n+n^{3}$
e) $e(n)=3 n \log ^{2} n+3 n^{2} \log n$
3. [20 points] An equivalent definition of Θ is:

Suppose that $f(n)$ and $g(n)$ are non-negative functions of N.
Then $f(n)$ is $\Theta(g(n))$ if there exist positive constants C_{1}, C_{2} and N
such that, for all $n \geq N, C_{1} g(n) \leq f(n) \leq C_{2} g(n)$.
Use the alternate definition given above to prove the following statement:
Suppose that $f(n), g(n), \mathrm{r}(\mathrm{n})$ and $s(n)$ are non-negative functions of N,
such that $f(n)$ is $\Theta(r(n))$ and $g(n)$ is $\Theta(s(n))$.
Then the function $f(n)+g(n)$ is $\Theta(r(n)+s(n))$.
4. [20 points] Suppose that executing an algorithm on input of size N requires executing $T(N)=N \log N+16 N$ instructions. How long would it take to execute this algorithm on hardware capable of carrying out 2^{24} instructions per second if $\mathrm{N}=2^{30}$? (Give your answer in hours, minutes and seconds, to the nearest second.)

